As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.
The peptidyl-prolyl- cis/trans -isomerase (PPIase) macrophage infectivity potentiator (Mip) contributes to the pathogenicity and fitness of L. pneumophila , the causative agent of Legionnaires’ disease. Here, we identified the stringent starvation protein SspB, hypothetical protein Lpc2061, and flagellin FlaA as bacterial interaction partners of Mip.
Substantial evidence has shown that overexpression of the inhibitor of apoptosis protein (IAP) survivin in human tumors correlates significantly with treatment resistance and poor patient prognosis. Survivin serves as a radiation resistance factor that impacts the DNA damage response by interacting with DNA-dependent protein kinase (DNA-PKcs). However, the complexity, molecular determinants, and functional consequences of this interrelationship remain largely unknown. By applying coimmunoprecipitation and flow cytometry-based Förster resonance energy transfer assays, we demonstrated a direct involvement of the survivin baculovirus IAP repeat domain in the regulation of radiation survival and DNA repair. This survivin-mediated activity required an interaction of residues S20 and W67 with the phosphoinositide 3-kinase (PI3K) domain of DNA-PKcs. In silico molecular docking and dynamics simulation analyses, in vitro kinase assays, and large-scale mass spectrometry suggested a heterotetrameric survivin–DNA-PKcs complex that results in a conformational change within the DNA-PKcs PI3K domain. Overexpression of survivin resulted in enhanced PI3K enzymatic activity and detection of differentially abundant phosphopeptides and proteins implicated in the DNA damage response. The survivin–DNA-PKcs interaction altered the S/T-hydrophobic motif substrate specificity of DNA-PKcs with a predominant usage of S/T-P phosphorylation sites and an increase of DNA-PKcs substrates including Foxo3. These data demonstrate that survivin differentially regulates DNA-PKcs-dependent radiation survival and DNA double-strand break repair via formation of a survivin–DNA-PKcs heterotetrameric complex. Significance: These findings provide insight into survivin-mediated regulation of DNA-PKcs kinase and broaden our knowledge of the impact of survivin in modulating the cellular radiation response. See related commentary by Iliakis, p. 2270
Background: Visualization of multiple sequence alignments often includes colored symbols, usually characters encoding amino acids, according to some (physical) properties, such as hydrophobicity or charge. Typically, color schemes are created manually, so that equal or similar colors are assigned to amino acids that share similar properties. However, this assessment is subjective and may not represent the similarity of symbols very well. Results: In this article we propose a different approach for color scheme creation: We leverage the similarity information of a substitution matrix to derive an appropriate color scheme. Similar colors are assigned to high scoring pairs of symbols, distant colors are assigned to low scoring pairs. In order to find these optimal points in color space a simulated annealing algorithm is employed. Conclusions: Using the substitution matrix as basis for a color scheme is consistent with the alignment, which itself is based on the very substitution matrix. This approach allows fully automatic generation of new color schemes, even for special purposes which have not been covered, yet, including schemes for structural alphabets or schemes that are adapted for people with color vision deficiency.
Gromacs is one of the most popular molecular simulation suites currently available. In this contribution we present streaMD, the first interface between Gromacs trajectory files and the statistical language R. The amount of data created due to ever increasing computational power renders fast and efficient analysis of trajectories into a challenge. Especially as standard approaches such as root-mean square fluctuations and the like provide only limited physical insight. In our streaMD package integration of the Gromacs I/O libraries with advanced, graph-based analysis methods as the java library Stream leads to both: improved speed and analysis depth. We benchmark our results and highlight the applicability of the package by an interesting problem in RNA design, namely the interaction of tetracycline with an aptamer. © 2018 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.