PurposeMultispectral imaging can provide reflectance measurements at multiple spectral bands for each image pixel. These measurements can be used for estimation of important physiological parameters, such as oxygenation, which can provide indicators for the success of surgical treatment or the presence of abnormal tissue. The goal of this work was to develop a method to estimate physiological parameters in an accurate and rapid manner suited for modern high-resolution laparoscopic images.MethodsWhile previous methods for oxygenation estimation are based on either simple linear methods or complex model-based approaches exclusively suited for off-line processing, we propose a new approach that combines the high accuracy of model-based approaches with the speed and robustness of modern machine learning methods. Our concept is based on training random forest regressors using reflectance spectra generated with Monte Carlo simulations.ResultsAccording to extensive in silico and in vivo experiments, the method features higher accuracy and robustness than state-of-the-art online methods and is orders of magnitude faster than other nonlinear regression based methods.ConclusionOur current implementation allows for near real-time oxygenation estimation from megapixel multispectral images and is thus well suited for online tissue analysis.
Abstract. Multispectral imaging in laparoscopy can provide tissue reflectance measurements for each point in the image at multiple wavelengths of light. These reflectances encode information on important physiological parameters not visible to the naked eye. Fast decoding of the data during surgery, however, remains challenging. While modelbased methods suffer from inaccurate base assumptions, a major bottleneck related to competing machine learning-based solutions is the lack of labelled training data. In this paper, we address this issue with the first transfer learning-based method to physiological parameter estimation from multispectral images. It relies on a highly generic tissue model that aims to capture the full range of optical tissue parameters that can potentially be observed in vivo. Adaptation of the model to a specific clinical application based on unlabelled in vivo data is achieved using a new concept of domain adaptation that explicitly addresses the high variance often introduced by conventional covariance-shift correction methods. According to comprehensive in silico and in vivo experiments our approach enables accurate parameter estimation for various tissue types without the need for incorporating specific prior knowledge on optical properties and could thus pave the way for many exciting applications in multispectral laparoscopy.
This paper significantly enhances the state of art in automatic labeling of endoscopic videos by introducing the use of the confidence metric, and by being the first study to use MI data for in vivo laparoscopic tissue classification. The data of our experiments will be released as the first in vivo MI dataset upon publication of this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.