This paper gives an overview about prediction capabilities and the development of noise reduction technologies appropriate to reduce high lift noise and propeller noise radiation for future low noise transport aircraft with short takeoff and landing capabilities. The work is embedded in the collaborative research centre SFB 880 in Braunschweig, Germany. Results are presented from all the acoustics related projects of SFB 880 which cover the aeroacoustic simulation of the effect of flow permeable materials, the characterization, development, manufacturing and operation of (porous) materials especially tailored to aeroacoustics, new propeller arrangements for minimum exterior noise due to acoustic shielding as well as the prediction of vibration excitation of aircraft structures, reduced by porous materials.
Edge noise is generated if turbulence interacts with solid edges. Reduction of trailing edge noise of airfoils can be achieved by replacing the solid material at the trailing edge by inlays of porous permeable material. The acoustic benefit of approximately 6 dB of such treatment is known from experiments. Enroute to numerically optimized porous properties, this paper presents a first principle based Computational Aeroacoustics (CAA) method for predicting the acoustic effect of a porous NACA0012 trailing edge. In a hybrid two-step CFD/CAA procedure the turbulence statistics from a solution of the Volume Averaged Navier-Stokes (VANS) equations is used as a basis for the prediction of turbulent-boundarylayer trailing-edge noise (TBL-TEN). For the acoustic part of the calculation, the Acoustic Perturbation Equations (APE) are solved in the flow field. Inside the porous regions, a different set of governing equations, referred to as Linear Perturbation Equations (LPE) will be solved. The LPE represent a modified form of the Linearized Euler Equations (LEE) with the APE vorticity source term shifted to the right-hand side. The new set of equations is derived by volume averaging the Navier-Stokes equations and decomposing the flow variables into a time-averaged mean part and a fluctuating part and isolating the vorticity source term to the right-hand side of the momentum equation. The LPE are verified by an analytical solution. The simulation results of a NACA0012 airfoil geometry with and without porous trailing edge treatment are compared to wind tunnel measurements. The noise reduction effect of such a trailing edge treatment is successfully demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.