We present a straightforward and generally applicable synthesis route for cofacially linked homo‐ and heterobimetallic porphyrin complexes. The protocol allows the synthesis of unsymmetrical aryl‐based meso‐meso as well as β‐meso‐linked porphyrins. Our method significantly increases the overall yield for the published compound known as o‐phenylene‐bisporphyrin (OBBP) by a factor of 6.8. Besides the synthesis of 16 novel homobimetallic complexes containing MnIII, FeIII, NiII, CuII, ZnII, and PdII, we achieved the first single‐crystal X‐ray structure of an unsymmetrical cofacial benzene‐linked porphyrin dimer containing both planar‐chiral enantiomers of a NiII2 complex. Additionally, this new methodology allows access to heterobimetallic complexes such as the FeIII‐NiII containing carbon monoxide dehydrogenase active site analogue. The isolated species were investigated by various techniques, including ion mobility spectrometry, DFT calculations, and UV/Vis spectroscopy. This allowed us to probe the influence of interplane distance on Soret band splitting.
Aromatic polyester polyols are often used in polyurethane rigid foam (PUR) and polyisocyanurate (PIR) synthesis, since they offer higher rigidity than polyether polyols. Herein, a route toward fully biobased aromatic polyester polyols was investigated using sugar-based 2,5-furandicarboxylic acid (FDCA) and diethylene glycol (DEG), enabling a direct one-step synthesis of a fully biobased aromatic polyester polyol, poly(diethylene furanoate) (PDEF), for applications in PIR rigid foam. Therefore, reaction conditions were optimized to obtain PDEF as a processable polyol with OH values and remaining unreacted DEG similar to a commercial, petroleum-based polyol. The processability was improved by either copolymerizing 10–20 mol % of a biobased aliphatic dicarboxylic acid, like succinic acid (SA) or adipic acid (AA), maintaining the fully biobased character of the polyol, or copolymerization with phthalic acid. The fully biobased polyester polyols were successfully prepared on a 100 g scale of dicarboxylic acids. Subsequent application in PIR rigid foam showed similar density, thermal conductivity, flame behavior, and compressive strength if compared to the rigid foam obtained from a commercial polyol. Thus, fully biobased PDEF can substitute petroleum-based aromatic polyester polyols in PIR applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.