Background: Nurr1 and FGFR1 are integrative nuclear factors participating in postmitotic dopaminergic neuron development. Results: Both nuclear receptors show a functional interaction in co-immunoprecipitation, FRAP, ChIP, and luciferase gene reporter assay. Conclusion: Cooperation of nuclear FGFR1 and Nurr1 offers a new mechanism in transcriptional regulation and integration. Significance: This mechanism may channel diverse stimuli in developing and mature dopaminergic neurons, providing a potential therapeutic target.
Endocrine fibroblast growth factor 23 (FGF23) is predominantly secreted by osteocytes and facilitates renal phosphate excretion. However, FGF23 is also present in cerebrospinal fluid. In chronic kidney disease, FGF23 serum levels are excessively elevated and associated with learning and memory deficits. Structural plasticity of the hippocampus such as formation of new synapses or an altered dendritic arborization comprises a cellular and morphological correlate of memory formation. Therefore, we hypothesize that FGF23 alters hippocampal neuron morphology and synapses. To address this, we prepared primary murine hippocampal cultures and incubated them with recombinant FGF23 alone or together with a soluble isoform of its co-receptor a-Klotho. Neuronal expression of a fluorescent reporter allowed for a detailed evaluation of the neuronal morphology by Sholl analysis. Additionally, we evaluated synaptic density, identified by stainings, for synaptic markers. We show an enhanced number of primary neurites combined with a reduced arborization, resulting in a less complex morphology of neurons treated with FGF23. Moreover, FGF23 enhances the synaptic density in a FGF-receptor (FGF-R) dependent manner. Finally, we addressed the corresponding signaling events downstream of FGF-R employing a combination of western blots and quantitative immunofluorescence. Interestingly, FGF23 induces phospholipase Cc activity in primary hippocampal neurons. Co-application of soluble a-Klotho leads to activation of the Akt-pathway and modifies FGF23-impact on neuronal morphology and synaptic density. Compared with other FGFs, this alternative signaling pattern is a possible reason for differential effects of FGF23 on hippocampal neurons and may thereby contribute to learning and memory deficits in chronic kidney disease patients.
BackgroundHerpes simplex virus-1 (HSV-1) infections of the central nervous system (CNS) can result in HSV-1 encephalitis (HSE) which is characterized by severe brain damage and long-term disabilities. Different cell types including neurons and astrocytes become infected in the course of an HSE which leads to an activation of glial cells. Activated glial cells change their neurotrophic factor profile and modulate inflammation and repair. The superfamily of fibroblast growth factors (FGFs) is one of the largest family of neurotrophic factors comprising 22 ligands. FGFs induce pro-survival signaling in neurons and an anti-inflammatory answer in glial cells thereby providing a coordinated tissue response which favors repair over inflammation. Here, we hypothesize that FGF expression is altered in HSV-1-infected CNS cells.MethodWe employed primary murine cortical cultures comprising a mixed cell population of astrocytes, neurons, microglia, and oligodendrocytes. Astrocyte reactivity was morphometrically monitored by an automated image analysis algorithm as well as by analyses of A1/A2 marker expression. Altered FGF expression was detected by quantitative real-time PCR and its paracrine FGF activity. In addition, HSV-1 mutants were employed to characterize viral factors important for FGF responses of infected host cells.ResultsAstrocytes in HSV-1-infected cortical cultures were transiently activated and became hypertrophic and expressed both A1- and A2-markers. Consistently, a number of FGFs were transiently upregulated inducing paracrine neurotrophic signaling in neighboring cells. Most prominently, FGF-4, FGF-8, FGF-9, and FGF-15 became upregulated in a switch-on like mechanism. This effect was specific for CNS cells and for a fully functional HSV-1. Moreover, the viral protein ICP0 critically mediated the FGF switch-on mechanism.ConclusionsHSV-1 uses the viral protein ICP0 for the induction of FGF-expression in CNS cells. Thus, we propose that HSV-1 triggers FGF activity in the CNS for a modulation of tissue response upon infection.
Nuclear localization of classical growth factors is a well-known phenomenon but still remains a molecular and cellular conundrum. Fibroblast growth factor-2 (FGF-2) is an excellent example of a protein which functions as an extracellular molecule involved in canonical receptor tyrosine kinase signaling as well as displaying intracellular functions. Paracrine and nuclear functions are two important sides of the same protein. FGF-2 is expressed in isoforms with different molecular weights from one mRNA species. In rodents, all of these isoforms become imported to the nucleus. In this review, we discuss structural and functional aspects of FGF-2 isoforms in the nervous system. The nuclear odyssey of FGF-2 is reflected by nuclear dynamics, localization to nuclear bodies such as nucleoli, binding to chromatin and engagement in various protein interactions. Recently discovered molecular partnerships of the isoforms shed light on their nuclear functions, thereby greatly extending our knowledge of the multifaceted functions of FGF-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.