Large eddy simulations of pulverised coal combustion (PCC-LES) stabilised on a laboratory-scale piloted jet burner are carried out. The joint simulation effort of three research groups at Freiberg University (FG), Imperial College (IC) and Stuttgart University (ST) is presented, and the details of the comprehensive coal combustion models and their numerical implementation in three different computer programs are discussed. The (standard) coal sub-models and parameters used by the different groups are unified wherever possible. Differences amongst the groups are a different code basis and an Eulerian treatment of the coal particles by IC, while FG and ST use the Lagrangian framework for particle transport. The flow modelling is first validated for the corresponding non-reacting case and all LES calculations accurately capture the experimental trends. Velocity field statistics for the PCC case are in good accordance with the experimental evidence, but scalar statistics illustrate the complexity of coal combustion modelling. The results show notable differences amongst the groups that cannot only be attributed to the different treatment of the particle phase, and they highlight the difficulty to assess and interpret the quality of specific modelling approaches, and a need for further work by the research community. The present study is the first to compare three originally independent transient coal simulations and a step towards comprehensive PCC-LES
Abstract:The Organic Rankine Cycle (ORC) is widely considered as a promising technology to produce electrical power output from low-grade thermal sources. In the last decade, several power plants have been installed worldwide in the MW range. However, despite its market potential, the commercialization of ORC power plants in the kW range did not reach a high level of maturity, for several reasons. Firstly, the specific price is still too high to offer an attractive payback period, and secondly, potential costumers for small-scale ORCs are typically SMEs (Small-Medium Enterprises), generally less aware of the potential savings this technology could lead to. When it comes to small-scale plants, additional design issues arise that still limit the widespread availability of the technology. This review paper presents the state of the art of the technology, from a technical and economic perspective. Working fluid selection and expander design are illustrated in detail, as they represent the bottleneck of the ORC technology for small-scale power production. In addition, a European market analysis is presented, which constitutes a useful instrument to understand the future evolution of the technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.