Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and temperature are implicated in the retreat and growing contribution to sea level rise of PIG and nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly constrained due to a lack of multi-year observations. Here we show, using a unique record close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at seasonal and interannual timescales, including a pronounced cold period from October 2011 to May 2013. This variability can be largely explained by two processes: cumulative ocean surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean currents and associated heat transport within Pine Island Bay, driven by a combination of local and remote forcing. Local atmospheric forcing therefore plays an important role in driving oceanic variability close to PIIS.
We present subannual observations (2009–2014) of a major West Antarctic glacier (Pine Island Glacier) and the neighboring ocean. Ongoing glacier retreat and accelerated ice flow were likely triggered a few decades ago by increased ocean‐induced thinning, which may have initiated marine ice sheet instability. Following a subsequent 60% drop in ocean heat content from early 2012 to late 2013, ice flow slowed, but by < 4%, with flow recovering as the ocean warmed to prior temperatures. During this cold‐ocean period, the evolving glacier‐bed/ice shelf system was also in a geometry favorable to stabilization. However, despite a minor, temporary decrease in ice discharge, the basin‐wide thinning signal did not change. Thus, as predicted by theory, once marine ice sheet instability is underway, a single transient high‐amplitude ocean cooling has only a relatively minor effect on ice flow. The long‐term effects of ocean temperature variability on ice flow, however, are not yet known.
Composite analysis is applied to study the dynamical ocean response to Madden-Julian (MJ) events, measured by anomalies in sea surface height from the merged TOPEX/Poseidon-European Remote Sensing satellite altimetry dataset. In each of the tropical ocean basins, significant equatorial waves are forced, which are shown to modulate the sea surface temperature (SST) by 0.2-0.3 • C in the absence of strong surface heat fluxes. In the Indian Ocean there is a clear dynamical response which may play a significant role in generating later MJ events. Surface westerly winds, associated with the active phase of the Madden-Julian Oscillation (MJO), force an eastward-propagating oceanic downwelling equatorial Kelvin wave, which, on reaching the eastern boundary at Sumatra, forces reflected downwelling equatorial Rossby waves and coastal Kelvin waves. The coastal Kelvin waves propagate southwards towards northern Australia and northwards into the Bay of Bengal, and will be important for local physical, chemical and biological processes. The equatorial Rossby waves propagate westward across the Indian Ocean, arriving in the western Indian Ocean approximately 80-100 days after the initial Kelvin wave was generated. The arrival of these waves generates positive SST anomalies which leads to convection and may trigger the next-but-one MJ event, or amplify the low-frequency tail of the MJO. This constitutes a coupled feedback mechanism from the ocean dynamics onto the MJO, somewhat similar to the delayed oscillator mechanism for the El Niño Southern Oscillation.
The Madden-Julian Oscillation (MJO) is sporadic, with episodes of cyclical activity interspersed with inactive periods. However, it remains unclear what may trigger a Madden-Julian (MJ) event which is not immediately preceded by any MJO activity: a 'primary' MJ event. A combination of case-studies and composite analysis is used to examine the extent to which the triggering of primary MJ events might occur in response to ocean dynamics. The case-studies show that such events can be triggered by the arrival of a downwelling oceanic equatorial Rossby wave, which is shown to be associated with a deepening of the mixed layer and positive sea-surface temperature (SST) anomalies of the order of 0.5-1• C. These SST anomalies are not attributable to forcing by surface fluxes which are weak for the case-studies analysed. Furthermore, composite analysis suggests that such forcing is consistently important for triggering primary events. The relationship is much weaker for successive events, due to the many other triggering mechanisms which operate during periods of cyclical MJO activity. This oceanic feedback mechanism is a viable explanation for the sporadic and broadband nature of the MJO. Additionally, it provides hope for forecasting MJ events during periods of inactivity, when MJO forecasts generally exhibit low skill.
The glaciers within the Amundsen Sea Embayment (ASE), West Antarctica, are amongst the most rapidly retreating in Antarctica. Meteorological reanalysis products are widely used to help understand and simulate the processes causing this retreat. Here we provide an evaluation against observations of four of the latest global reanalysis products within the ASE region-the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-I), Japanese 55-year Reanalysis (JRA-55), Climate Forecast System Reanalysis (CFSR), and Modern Era Retrospective-Analysis for Research and Applications (MERRA). The observations comprise data from four automatic weather stations (AWSs), three research vessel cruises, and a new set of 38 radiosondes all within the period 2009-2014. All four reanalyses produce 2 m temperature fields that are colder than AWS observations, with the biases varying from approximately À1.8°C (ERA-I) to À6.8°C (MERRA). Over the Amundsen Sea, spatially averaged summertime biases are between À0.4°C (JRA-55) and À2.1°C (MERRA) with notably larger cold biases close to the continent (up to À6°C) in all reanalyses. All four reanalyses underestimate near-surface wind speed at high wind speeds (>15 m s À1 ) and exhibit dry biases and relatively large root-mean-square errors (RMSE) in specific humidity. A comparison to the radiosonde soundings shows that the cold, dry bias at the surface extends into the lower troposphere; here ERA-I and CFSR reanalyses provide the most accurate profiles. The reanalyses generally contain larger temperature and humidity biases, (and RMSE) when a temperature inversion is observed, and contain larger wind speed biases (~2 to 3 m s À1 ), when a low-level jet is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.