Anthropogenically induced global climate change has profound implications for marine ecosystems and the economic and social systems that depend upon them. The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature. However, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex. For example, changes in ocean chemistry may be more important than changes in temperature for the performance and survival of many organisms. Ocean circulation, which drives larval transport, will also change, with important consequences for population dynamics. Furthermore, climatic impacts on one or a few Ôleverage speciesÕ may result in sweeping community-level changes. Finally, synergistic effects between climate and other anthropogenic variables, particularly fishing pressure, will likely exacerbate climate-induced changes. Efforts to manage and conserve living marine systems in the face of climate change will require improvements to the existing predictive framework. Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populationsÕ ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond.
Significance
Sea stars inhabiting the Northeast Pacific Coast have recently experienced an extensive outbreak of wasting disease, leading to their degradation and disappearance from many coastal areas. In this paper, we present evidence that the cause of the disease is transmissible from disease-affected animals to apparently healthy individuals, that the disease-causing agent is a virus-sized microorganism, and that the best candidate viral taxon, the sea star-associated densovirus (SSaDV), is in greater abundance in diseased than in healthy sea stars.
Morphological relationships change with overall body size and body size often varies among populations. Therefore, quantitative analyses of individual traits from organisms in different populations or environments (e.g., in studies of phenotypic plasticity) often adjust for differences in body size to isolate changes in allometry. Most studies of among population variation in morphology either (1) use analysis of covariance (ANCOVA) with a univariate measure of body size as the covariate, or (2) compare residuals from ordinary least squares regression of each trait against body size or the first principal component of the pooled data (shearing). However, both approaches are problematic. ANCOVA depends on assumptions (small variance in the covariate) that are frequently violated in this context. Residuals analysis assumes that scaling relationships within groups are equal, but this assumption is rarely tested. Furthermore, scaling relationships obtained from pooled data typically mischaracterize within-group scaling relationships. We discuss potential biases imposed by the application of ANCOVA and residuals analysis for quantifying morphological differences, and elaborate and demonstrate a more effective alternative: common principal components analysis combined with Burnaby's back-projection method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.