The
bicyclic boronate VNRX-5133 (taniborbactam) is a new type of
β-lactamase inhibitor in clinical development. We report that
VNRX-5133 inhibits serine-β-lactamases (SBLs) and some clinically
important metallo-β-lactamases (MBLs), including NDM-1 and VIM-1/2.
VNRX-5133 activity against IMP-1 and tested B2/B3 MBLs was lower/not
observed. Crystallography reveals how VNRX-5133 binds to the class
D SBL OXA-10 and MBL NDM-1. The crystallographic results highlight
the ability of bicyclic boronates to inhibit SBLs and MBLs via binding
of a tetrahedral (sp3) boron species. The structures imply
conserved binding of the bicyclic core with SBLs/MBLs. With NDM-1,
by crystallography, we observed an unanticipated VNRX-5133 binding
mode involving cyclization of its acylamino oxygen onto the boron
of the bicyclic core. Different side-chain binding modes for bicyclic
boronates for SBLs and MBLs imply scope for side-chain optimization.
The results further support the “high-energy-intermediate”
analogue approach for broad-spectrum β-lactamase inhibitor development
and highlight the ability of boron inhibitors to interchange between
different hybridization states/binding modes.
Transient receptor potential (TRP) channels have important roles in environmental sensing in animals. Human TRP subfamily A member 1 (TRPA1) is responsible for sensing allyl isothiocyanate (AITC) and other electrophilic sensory irritants. TRP subfamily vanilloid member 3 (TRPV3) is involved in skin maintenance. TRPV3 is a reported substrate of the 2-oxoglutarate oxygenase factor inhibiting hypoxia-inducible factor (FIH). We report biochemical and structural studies concerning asparaginyl hydroxylation of the ankyrin repeat domains (ARDs) of TRPA1 and TRPV3 catalysed by FIH. The results with ARD peptides support a previous report on FIH-catalysed TRPV3 hydroxylation and show that, of the 12 potential TRPA1 sequences investigated, one sequence (TRPA1 residues 322-348) undergoes hydroxylation at Asn336. Structural studies reveal that the TRPA1 and TRPV3 ARDs bind to FIH with a similar overall geometry to most other reported FIH substrates. However, the binding mode of TRPV3 to FIH is distinct from that of other substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.