ObjectiveTissue-resident memory T cells (TRM) are vital immune sentinels that provide protective immunity. While hepatic CD8+ TRM have been well described, little is known about the location, phenotype and function of CD4+ TRM.DesignWe used multiparametric flow cytometry, histological assessment and novel human tissue coculture systems to interrogate the ex vivo phenotype, function and generation of the intrahepatic CD4+ T-cell compartment. We also used leukocytes isolated from human leukocyte antigen (HLA)-disparate liver allografts to assess long-term retention.ResultsHepatic CD4+ T cells were delineated into three distinct populations based on CD69 expression: CD69−, CD69INT and CD69HI. CD69HICD4+ cells were identified as tissue-resident CD4+ T cells on the basis of their exclusion from the circulation, phenotypical profile (CXCR6+CD49a+S1PR1−PD-1+) and long-term persistence within the pool of donor-derived leukcoocytes in HLA-disparate liver allografts. CD69HICD4+ T cells produced robust type 1 polyfunctional cytokine responses on stimulation. Conversely, CD69INTCD4+ T cells represented a more heterogenous population containing cells with a more activated phenotype, a distinct chemokine receptor profile (CX3CR1+CXCR3+CXCR1+) and a bias towards interleukin-4 production. While CD69INTCD4+ T cells could be found in the circulation and lymph nodes, these cells also formed part of the long-term resident pool, persisting in HLA-mismatched allografts. Notably, frequencies of CD69INTCD4+ T cells correlated with necroinflammatory scores in chronic hepatitis B infection. Finally, we demonstrated that interaction with hepatic epithelia was sufficient to generate CD69INTCD4+ T cells, while additional signals from the liver microenvironment were required to generate liver-resident CD69HICD4+ T cells.ConclusionsHigh and intermediate CD69 expressions mark human hepatic CD4+ TRM and a novel functionally distinct recirculating population, respectively, both shaped by the liver microenvironment to achieve diverse immunosurveillance.
Endothelial cells line the blood and lymphatic vasculature, and act as an essential physical barrier, control nutrient transport, facilitate tissue immunosurveillance and coordinate angiogenesis and lymphangiogenesis1,2. In the intestine, dietary and microbial cues are particularly important in the regulation of organ homeostasis. However, whether enteric endothelial cells actively sense and integrate such signals is currently unknown. Here we show that the aryl hydrocarbon receptor (AHR) acts as a critical node for endothelial cell sensing of dietary metabolites in adult mice and human primary endothelial cells. We first established a comprehensive single-cell endothelial atlas of the mouse small intestine, uncovering the cellular complexity and functional heterogeneity of blood and lymphatic endothelial cells. Analyses of AHR-mediated responses at single-cell resolution identified tissue-protective transcriptional signatures and regulatory networks promoting cellular quiescence and vascular normalcy at steady state. Endothelial AHR deficiency in adult mice resulted in dysregulated inflammatory responses and the initiation of proliferative pathways. Furthermore, endothelial sensing of dietary AHR ligands was required for optimal protection against enteric infection. In human endothelial cells, AHR signalling promoted quiescence and restrained activation by inflammatory mediators. Together, our data provide a comprehensive dissection of the effect of environmental sensing across the spectrum of enteric endothelia, demonstrating that endothelial AHR signalling integrates dietary cues to maintain tissue homeostasis by promoting endothelial cell quiescence and vascular normalcy.
Background & Aims: Tissue-resident memory T cells (TRM) are important immune sentinels that provide efficient in situ immunity. Liver-resident CD8+ TRM have been previously described, and contribute to viral control in persistent hepatotropic infections. However, little is known regarding liver CD4+ TRM cells. Here we profiled resident and non-resident intrahepatic CD4+ T cell subsets, assessing their phenotype, function, differential generation requirements and roles in hepatotropic infection. Methods: Liver tissue was obtained from 173 subjects with (n=109) or without (n=64) hepatic pathology. Multiparametric flow cytometry and immunofluorescence imaging examined T cell phenotype, functionality and location. Liver T cell function was determined after stimulation with anti-CD3/CD28 and PMA/Ionomycin. Co-cultures of blood-derived lymphocytes with hepatocyte cell lines, primary biliary epithelial cells, and precision-cut autologous liver slices were used to investigate the acquisition of liver-resident phenotypes. Results: CD69 expression delineated two distinct subsets in the human liver. CD69HI cells were identified as CD4+ TRM due to exclusion from the circulation, a residency-associated phenotype (CXCR6+CD49a+S1PR1-PD-1+), restriction to specific liver niches, and ability to produce robust type-1 multifunctional cytokine responses. Conversely, CD69INT were an activated T cell population also found in the peripheral circulation, with a distinct homing profile (CX3CR1+CXCR3+CXCR1+), and a bias towards IL-4 production. Frequencies of CD69INT cells correlated with the degree of fibrosis in chronic hepatitis B virus infection. Interaction with hepatic epithelia was sufficient to generate CD69INT cells, while additional signals from the liver microenvironment were required to generate liver-resident CD69HI cells. Conclusions: Intermediate and high CD69 expression demarcates two discrete intrahepatic CD4+ T cell subsets with distinct developmental and functional profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.