Silver (Ag) pastes are widely used in the global market for most solar cell architectures. Thereby, lead (Pb) is no longer wanted in productions for environmental reasons. In this work, a model for the contact formation between Pb-free, tellurium oxide (TeO2) containing screen-printable Ag pastes and silicon is presented. It is shown that Te plays a key role in this model. Te is not only an important part in etching the surface passivation layers with TeO2 dissolving the dielectric layer but also for a formation of the contacts with Te forming a compound consisting of Ag2Te. Using EDX mapping, local contact regions can be examined and interpreted for contact formation. The used paste system enables far more flexible paste mixturing leading to a novel developed commercial paste which is on a par with other pastes used in industry concerning the resulting contact properties. This is also demonstrated in this work by the very low contact resistivity of less than 1 mΩcm2 over a wide range of firing peak temperatures. It is additionally shown that good resistivities can be achieved on both n+- and p+-doped regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.