In the smallest grammar problem, we are given a word w and we want to compute a preferably small context-free grammar G for the singleton language {w} (where the size of a grammar is the sum of the sizes of its rules, and the size of a rule is measured by the length of its right side). It is known that, for unbounded alphabets, the decision variant of this problem is NP-hard and the optimisation variant does not allow a polynomial-time approximation scheme, unless P = NP. We settle the long-standing open problem whether these hardness results also hold for the more realistic case of a constant-size alphabet. More precisely, it is shown that the smallest grammar problem remains NP-complete (and its optimisation version is APX-hard), even if the alphabet is fixed and has size of at least 17. The corresponding reduction is robust in the sense that it also works for an alternative size-measure of grammars that is commonly used in the literature (i. e., a size measure also taking the number of rules into account), and it also allows to conclude that even computing the number of rules required by a smallest grammar is a hard problem. On the other hand, if the number of nonterminals (or, equivalently, the number of rules) is bounded by a constant, then the smallest grammar problem can be solved in polynomial time, which is shown by encoding it as a problem on graphs with interval structure. However, treating the number of rules as a parameter (in terms of parameterised complexity) yields W[1]-hardness. Furthermore, we present an $\mathcal {O}(3^{\mid {w}\mid })$ O ( 3 ∣ w ∣ ) exact exponential-time algorithm, based on dynamic programming. These three main questions are also investigated for 1-level grammars, i. e., grammars for which only the start rule contains nonterminals on the right side; thus, investigating the impact of the “hierarchical depth” of grammars on the complexity of the smallest grammar problem. In this regard, we obtain for 1-level grammars similar, but slightly stronger results.
We study the complexity of the two dual covering and packing distance-based problems Broadcast Domination and Multipacking in digraphs. A dominating broadcast of a digraph D is a function f : V (D) → N such that for each vertex v of D, there exists a vertex t with f (t) > 0 having a directed path to v of length at most f (t). The cost of f is the sum of f (v) over all vertices v. A multipacking is a set S of vertices of D such that for each vertex v of D and for every integer d, there are at most d vertices from S within directed distance at most d from v. The maximum size of a multipacking of D is a lower bound to the minimum cost of a dominating broadcast of D. Let Broadcast Domination denote the problem of deciding whether a given digraph D has a dominating broadcast of cost at most k, and Multipacking the problem of deciding whether D has a multipacking of size at least k. It is known that Broadcast Domination is polynomial-time solvable for the class of all undirected graphs (that is, symmetric digraphs), while polynomial-time algorithms for Multipacking are known only for a few classes of undirected graphs. We prove that Broadcast Domination and Multipacking are both NP-complete for digraphs, even for planar layered acyclic digraphs of small maximum degree. Moreover, when parameterized by the solution cost/solution size, we show that the problems are respectively W[2]-hard and W[1]-hard. We also show that Broadcast Domination is FPT on acyclic digraphs, and that it does not admit a polynomial kernel for such inputs, unless the polynomial hierarchy collapses to its third level. In addition, we show that both problems are FPT when parameterized by the solution cost/solution size together with the maximum out-degree. Finally, we give for both problems polynomial-time algorithms for some subclasses of acyclic digraphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.