The septins are a conserved family of guanine nucleotide binding proteins, often named the fourth component of the cytoskeleton. They self-assemble into non-polar filaments and further into higher ordered structures. Properly assembled septin structures are required for a wide range of indispensable intracellular processes such as cytokinesis, vesicular transport, polarity establishment and cellular adhesion. Septins belong structurally to the P-Loop NTPases. However, unlike the small GTPases like Ras, septins do not mediate signals to effectors through GTP binding and hydrolysis. The role of nucleotide binding and subsequent GTP hydrolysis by the septins is rather controversially debated. We compile here the structural features from the existing septin crystal- and cryo-EM structures regarding protofilament formation, inter-subunit interface architecture and nucleotide binding and hydrolysis. These findings are supplemented with a summary of available biochemical studies providing information regarding nucleotide binding and hydrolysis of fungal and mammalian septins.
The septins are a conserved family of filament‐forming guanine nucleotide binding proteins, often named the fourth component of the cytoskeleton. Correctly assembled septin structures are required for essential intracellular processes such as cytokinesis, vesicular transport, polarity establishment, and cellular adhesion. Structurally, septins belong to the P‐Loop NTPases but they do not mediate signals to effectors through GTP binding and hydrolysis. GTP binding and hydrolysis are believed to contribute to septin complex integrity, but biochemical approaches addressing this topic are hampered by the stability of septin complexes after recombinant expression and the lack of nucleotide‐depleted complexes. To overcome this limitation, we used a molecular dynamics‐based approach to determine inter‐subunit binding free energies in available human septin dimer structures and in their apo forms, which we generated in silico. The nucleotide in the GTPase active subunits SEPT2 and SEPT7, but not in SEPT6, was identified as a stabilizing element in the G interface. Removal of GDP from SEPT2 and SEPT7 results in flipping of a conserved Arg residue and disruption of an extensive hydrogen bond network in the septin unique element, concomitant with a decreased inter‐subunit affinity. Based on these findings we propose a singular “lock‐hydrolysis” mechanism stabilizing human septin filaments.
The septins are a conserved family of filament-forming guanine nucleotide binding proteins, often named the fourth component of the cytoskeleton. Correctly assembled septin structures are required for essential intracellular processes such as cytokinesis, vesicular transport, polarity establishment, and cellular adhesion. Structurally, septins belong to the P-Loop NTPases but they do not mediate signals to effectors through GTP binding and hydrolysis. GTP binding and hydrolysis are believed to contribute to septin complex integrity, but biochemical approaches addressing this topic are hampered by the stability of septin complexes after recombinant expression and the lack of nucleotide-depleted complexes. To overcome this limitation, we used a molecular dynamics-based approach to determine inter-subunit binding free energies in available human septin dimer structures and in their apo forms, which we generated in silico. The nucleotide in the GTPase active subunits SEPT2 and SEPT7, but not in SEPT6, was identified as a stabilizing element in the G interface as it is coordinated at its ribose ring to conserved amino acids. Removal of GDP from SEPT2 and SEPT7 results in flipping of a conserved Arg residue and disruption of an extensive hydrogen bond network in the septin unique element, concomitant with a decreased inter-subunit affinity.
Ubiquitylation and phosphorylation control composition and architecture of the cell separation machinery in yeast and other eukaryotes. The significance of septin sumoylation on cell separation remained an enigma. Septins form an hourglass structure at the bud neck of yeast cells that transforms into a split septin double ring during mitosis. We discovered that sumoylated septins recruit the cytokinesis checkpoint protein Fir1 to the peripheral side of the septin hourglass. Subsequent de-sumoylation and synchronized binding to the scaffold Spa2 relocate Fir1 in a seamless transition between the split septin rings. Fir1 binds and carries Skt5 on its route to the division plane where the Fir1-Skt5 complex serves as receptor for chitin synthase III. We propose that the opposite positioning of the sumoylated septins and Spa2 creates a tension across the ring that upon de-sumoylation tunnels the membrane-bound Fir1-Skt5 complex through a transiently permeable septin diffusion barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.