Objectives This study aims to describe the mortality risk of children in the community who had severe acute malnutrition (SAM) defined by either a mid-upper arm circumference (MUAC) <115mm, a low weight-for-height Z-score (WHZ) <-3 or both criteria. Methods We pooled individual-level data from children aged 6–59 months enrolled in 3 community-based studies in the Democratic Republic of the Congo (DRC), Senegal and Nepal. We estimate the mortality hazard using Cox proportional hazard models in groups defined by either anthropometric indicator. Results In total, we had 49,001 time points provided by 15,060 children available for analysis, summing to a total of 143,512 person-months. We found an increasing death rate with a deteriorating nutritional status for all anthropometrical indicators. Children identified as SAM only by a low MUAC (<115mm) and those identified only by a low WHZ (Z-score <-3) had a similar mortality hazard which was about 4 times higher than those without an anthropometric deficit. Having both a low MUAC and a low WHZ was associated with an 8 times higher hazard of dying compared to children within the normal range. The 2 indicators identified a different set of children; the proportion of children identified by both indicators independently ranged from 7% in the DRC cohort, to 35% and 37% in the Senegal and the Nepal cohort respectively. Conclusion In the light of an increasing popularity of using MUAC as the sole indicator to identify SAM children, we show that children who have a low WHZ, but a MUAC above the cut-off would be omitted from diagnosis and treatment despite having a similar risk of death.
BackgroundThe two anthropometric indicators of acute malnutrition in children under 5 years, i.e. a Mid-Upper Arm Circumference < 125 mm (MUAC125) or a Weight-for-Height Z-score<−2 (WHZ−2), correlate poorly. We aimed at assessing the contribution of age, sex, stunting (Height-for-Age HAZ<−2), and low sitting-standing height ratio Z-score (SSRZ in the 1st tertile of the study population, called hereafter ‘longer legs’) to this diagnosis discrepancy.MethodsData from 16 cross-sectional nutritional surveys carried out by Action Against Hunger International in South Sudan, the Philippines, Chad, and Bangladesh fed multilevel, multivariate regression models, with either WHZ−2 or MUAC125 as the dependent variable and age, sex, stunting, and ‘longer legs’ as the independent ones. We also compared how the performance of MUAC125 and WHZ−2 to detect slim children, i.e. children with a low Weight-for-Age (WAZ<−2) but no linear growth retardation (HAZ≥−2), was modified by the contributors.ResultsOverall 23.1 % of the 14,409 children were identified as acutely malnourished by either WHZ−2 or MUAC125, but only 28.5 % of those (949/3,328) were identified by both indicators. Being stunted (+17.8 %; 95 % CI: 14.8 %; 22.8 %), being a female (+16.5 %; 95 % CI: 13.5 %; 19.5 %) and being younger than 24 months (+33.6 %; 95 % CI: 30.4 %; 36.7 %) were factors strongly associated with being detected as malnourished by MUAC125 and not by WHZ−2, whereas having ‘longer legs’ moderately increased the diagnosis by WHZ−2 (+4.2 %; 95 % CI: 0.7 %; 7.6 %). The sensitivity to detect slim children by MUAC125 was 31.0 % (95 % CI: 26.8 %; 35.2 %) whereas it was 70.6 % (95 % CI: 65.4 %; 75.9 %) for WHZ−2. The sensitivity of MUAC125 was particularly affected by age (57.4 % vs. 18.1 % in children aged < 24 months vs. ≥ 24 months). Specificity was high for both indicators.ConclusionsMUAC125 should not be used as a stand-alone criterion of acute malnutrition given its strong association with age, sex and stunting, and its low sensitivity to detect slim children. Having ‘longer legs’ moderately increases the diagnosis of acute malnutrition by WHZ−2. Prospective studies are urgently needed to elucidate the clinical and physiological outcomes of the various anthropometric indicators of malnutrition.
Guesdon B, Paradis É , Samson P, Richard D. Effects of intracerebroventricular and intra-accumbens melanin-concentrating hormone agonism on food intake and energy expenditure. Am J Physiol Regul Integr Comp Physiol 296: R469 -R475, 2009. First published January 7, 2009 doi:10.1152/ajpregu.90556.2008.-The brain melanin-concentrating hormone (MCH) system represents an anabolic system involved in energy balance regulation through influences exerted on the homeostatic and nonhomeostatic controls of food intake and energy expenditure. The present study was designed to further delineate the effect of the MCH system on energy balance regulation by assessing the actions of the MCH receptor 1 (MCHR1) agonism on both food intake and energy expenditure after intracerebroventricular (third ventricle) and intra-nucleus-accumbens-shell (intraNAcSH) injections of a MCHR1 agonist. Total energy expenditure and substrate oxidation were assessed following injections in male Wistar rats using indirect calorimetry. Food intake was also measured. Pair-fed groups were added to evaluate changes in thermogenesis that would occur regardless of the meal size and its thermogenic response. Using such experimental conditions, we were able to demonstrate that acute MCH agonism in the brain, besides its orexigenic effect, induced a noticeable change in the utilization of the main metabolic fuels. In pair-fed animals, MCH significantly reduced lipid oxidation when it was injected in the third ventricle. Such an effect was not observed following the injection of MCH in the NAcSH, where MCH nonetheless strongly stimulated appetite. The present results further delineate the influence of MCH on energy expenditure and substrate oxidation while confirming the key role of the NAcSH in the effects of the MCH system on food intake. brain; feeding behavior; substrate oxidation; energy balance IN THE BRAIN, SEVERAL INTERCONNECTED neurons receiving inputs from peripheral and central signals exert complex controls on food intake and energy expenditure, which are the two inescapable determinants of energy balance (6,13,23,31). In recent years, a few groups of investigators have directed their attention to one of the regulatory determinants of energy balance, namely the melanin-concentrating hormone (MCH) system. MCH-containing neurons are concentrated within the lateral hypothalamus (LH) and the adjacent zona incerta from where they project to the rest of the brain (7), in a pattern that generally conforms to the distribution of the MCH receptor 1 (MCHR1, the functional MCH receptor in rats and mice) (17).Evidence that the MCH system is involved in body weight regulation has emerged from various sources (24, 29). Hypothalamic expression of MCH mRNA is upregulated during starvation in lean mice, as well as in genetically obese ob/ob mice (30), and MCH overexpression leads to obesity and to an increased susceptibility to high-fat feeding (19). In addition, acute or chronic intracerebroventricular administration of MCH or MCHR1 agonists stimulate feeding in r...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.