Introduction: Malaria is one of the most prevalent human infections worldwide with over 40% of the world's population living in malaria-endemic areas. In the absence of an effective vaccine, emergence of drug-resistant strains requires urgent drug development. Current methods applied to drug target validation, a crucial step in drug discovery, possess limitations in malaria. These constraints require the development of techniques capable of simplifying the validation of Plasmodial targets. Areas covered: The authors review the current state of the art in techniques used to validate drug targets in malaria, including our contributionthe protein interference assay (PIA)as an additional tool in rapid in vivo target validation. Expert opinion: Each technique in this review has advantages and disadvantages, implying that future validation efforts should not focus on a single approach, but integrate multiple approaches. PIA is a significant addition to the current toolset of antimalarial validation. Validation of aspartate metabolism as a druggable pathway provided proof of concept of how oligomeric interfaces can be exploited to control specific activity in vivo. PIA has the potential to be applied not only to other enzymes/ pathways of the malaria parasite but could, in principle, be extrapolated to other infectious diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.