A series of laboratory experiments was conducted to better understand the behavior of grass carp eggs and larvae in moving water in order to develop and implement new strategies for control and prediction of their dispersal and drift at early life stages. Settling velocity and density of a representative sample of eggs were estimated, and three trials of flume experiments with different flow conditions were conducted with live eggs in a temperature-controlled setting with a mobile sediment bed. In these trials, egg and larval stages were continuously analyzed over periods of 80 hours; and eggs and larvae interactions with the flow and sediment bed were monitored and characterized qualitatively and quantitatively. Survival rates were quantified after each trial, highlighting physical causes for increased mortality. Detailed flow analysis was correlated to the observed drifting and swimming behavior of eggs and larvae, to estimate distributions across the water depth, as well as traveling and swimming speeds. Evidence of the influence of mean and turbulent flow in the suspension and transport of eggs are reported, and swimming patterns of larvae at different developmental stages are described. These findings support the development of new strategies for monitoring the spread of grass carp eggs and larvae in rivers, and provide new inputs to predict conditions favorable for spawning and hatching, allowing for mitigation measures at early life stages, which are critical to control their dispersal.
Understanding the response of grass carp to flow and turbulence regimes during early life stages is fundamental to monitoring and controlling their spread. A comprehensive set of hydrodynamic experiments was conducted with live grass carp eggs and larvae, to better understand their drifting and swimming patterns with 3 different in-stream obstructions: (1) a gravel bump, (2) a single cylinder, and (3) submerged vegetation. The hydrodynamic behavior of eggs and larvae with each obstruction was continuously monitored for about 85 consecutive hours. Transient spatial distributions of the locations of eggs and larvae throughout the water column were generated for each flow scenario. Results show that the active swimming capabilities of larvae allow them to seek areas of low turbulence and low shear stresses, and that eggs are susceptible to damage by high levels of turbulence, which was further corroborated with tests in an oscillating grid-stirred turbulence tank. Our study seeks to better inform field collection of grass carp during early life stages, and to guide the design of alternative approaches to control the dispersal of this invasive species in North America.
Bighead, silver, and grass carps are invasive in the waterways of central North America, and grass carp reproduction in tributaries of the Great Lakes has now been documented. Questions about recruitment potential motivate a need for accurate models of egg and larval dispersal. Quantitative data on swimming behaviors and capabilities during early ontogeny are needed to improve these dispersal models. We measured ontogenetic changes in routine and maximum swimming speeds of bighead, grass, and silver carp larvae. Daily measurements of routine swimming speed were taken for two weeks post-hatch using a still camera and the LARVEL program, a custom image-analysis software. Larval swimming speed was calculated using larval locations in subsequent image frames and time between images. Using an endurance chamber, we determined the maximum swimming speed of larvae (post-gas bladder inflation) for four to eight weeks post-hatch. For all species, larval swimming speeds showed similar trends with respect to ontogeny: increases in maximum speed, and decreases in routine speed. Maximum speeds of bighead and grass carp larvae were similar and generally faster than silver carp larvae. Routine swimming speeds of all larvae were highest before gas bladder inflation, most likely because gas bladder inflation allowed the fish to maintain position without swimming. Downward vertical velocities of pre-gas bladder inflation fish were faster than upward velocities. Among the three species, grass carp larvae had the highest swimming speeds in the pre-gas bladder inflation period, and the lowest speeds in the post-gas bladder inflation period. Knowledge of swimming capability of these species, along with hydraulic characteristics of a river, enables further refinement of models of embryonic and larval drift.
In this experimental series, we studied the swimming capabilities and response of grass carp (Ctenopharyngodon idella) larvae to flow turbulence in a laboratory flume. We compared three different experimental configurations, representing in‐stream obstructions commonly found in natural streams (e.g., a gravel bump, a single vertical cylinder, and patches of submerged rigid vegetation). Grass carp larvae (postgas bladder emergence) were introduced to each experimental configuration and subjected to a variety of hydrodynamic forces of different magnitudes and scales. We varied the flow velocities and water depths and found ranges of turbulent kinetic energy and Reynolds stresses that triggered a response in larval trajectories, identified by measured horizontal and vertical swimming speeds for each flow condition. Larvae apparently actively avoided areas with increased levels of turbulence by swimming away, moving faster in short bursts, and expending more energy. In addition to the magnitude of turbulent kinetic energy, the length scale and time scale of turbulent eddies also influenced the larvae response. These findings support the development of new strategies for controlling the spread of grass carp larvae in rivers, as well as the development of numerical tools incorporating active swimming capabilities to predict larval transport in streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.