We study light propagation in a photonic system that shows stepwise evolution in a discretized environment. It resembles a discrete-time version of photonic waveguide arrays or quantum walks. By introducing controlled photon losses to our experimental setup, we observe unexpected effects like subexponential energy decay and formation of complex fractal patterns. This demonstrates that the interplay of linear losses, discreteness and energy gradients leads to genuinely new coherent phenomena in classical and quantum optical experiments. Moreover, the influence of decoherence is investigated.
We show the existence of ground states in the massless spin boson model without any infrared regularization. Our proof is non-perturbative and relies on a compactness argument. It works for arbitrary values of the coupling constant under the hypothesis that the second derivative of the ground state energy as a function of a constant external magnetic field is bounded.
We consider the spin boson model with external magnetic field. We prove a path integral formula for the heat kernel, known as Feynman–Kac–Nelson (FKN) formula. We use this path integral representation to express the ground state energy as a stochastic integral. Based on this connection, we determine the expansion coefficients of the ground state energy with respect to the magnetic field strength and express them in terms of correlation functions of a continuous Ising model. From a recently proven correlation inequality, we can then deduce that the second order derivative is finite. As an application, we show existence of ground states in infrared-singular situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.