Graph Convolutional Networks (GCNs) are widely used in a variety of applications, and can be seen as an unstructured version of standard Convolutional Neural Networks (CNNs). As in CNNs, the computational cost of GCNs for large input graphs (such as large point clouds or meshes) can be high and inhibit the use of these networks, especially in environments with low computational resources. To ease these costs, quantization can be applied to GCNs. However, aggressive quantization of the feature maps can lead to a significant degradation in performance. On a different note, Haar wavelet transforms are known to be one of the most effective and efficient approaches to compress signals. Therefore, instead of applying aggressive quantization to feature maps, we propose to utilize Haar wavelet compression and light quantization to reduce the computations and the bandwidth involved with the network. We demonstrate that this approach surpasses aggressive feature quantization by a significant margin, for a variety of problems ranging from node classification to point cloud classification and part and semantic segmentation.
In deep learning and physical science problems, there is a growing need for better optimization methods capable of working in very high dimensional settings. Though the use of approximated Hessians and co-variance matrices can accelerate the optimization process, these methods do not always scale well to high dimensional settings. In an attempt to meet these needs, in this paper, we propose an optimization method, called Adaptive Two Mode (ATM), that does not use any DxD objects, but rather relies on the interplay of isotropic and directional search modes. It can adapt to different optimization problems, by the use of an online parameter tuning scheme, that allocates more resources to better performing versions of the algorithm. To test the performance of this method, the Adaptive Two Mode algorithm was benchmarked on the noiseless BBOB-2009 testbed. Our results show that it is capable of solving 23/24 of the functions in 2D and can solve higher dimensional problems that do not require many changes in the direction of the search. However, it underperforms on problems in which the function to be minimized changes rapidly in non-separable directions, yet mildly in others.
Quantized neural networks (QNNs) are among the main approaches for deploying deep neural networks on low-resource edge devices. Training QNNs using different levels of precision throughout the network (mixed-precision quantization) typically achieves superior trade-offs between performance and computational load. However, optimizing the different precision levels of QNNs can be complicated, as the values of the bit allocations are discrete and difficult to differentiate for. Moreover, adequately accounting for the dependencies between the bit allocation of different layers is not straightforward. To meet these challenges, in this work, we propose GradFreeBits: a novel joint optimization scheme for training mixed-precision QNNs, which alternates between gradient-based optimization for the weights and gradient-free optimization for the bit allocation. Our method achieves a better or on par performance with the current state-of-the-art low-precision classification networks on CIFAR10/100 and ImageNet, semantic segmentation networks on Cityscapes, and several graph neural networks benchmarks. Furthermore, our approach can be extended to a variety of other applications involving neural networks used in conjunction with parameters that are difficult to optimize for.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.