Twenty-five years ago, Boduszynski et al. conducted a comprehensive study of heavy oil composition and concluded that crude oil composition increases gradually and continuously with regard to aromaticity, molecular weight, and heteroatom content from the light distillates to non-distillables (the Boduszynski continuum model). Previous exhaustive characterization of heavy vacuum gas oil by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provided compositional data that strongly supports the continuum model. However, when the molecular formulas obtained by FT-ICR MS for the distillates and asphaltenes from the same parent crude oil are plotted as double bond equivalents (DBE) versus carbon number, a gap appears between the compositional space of "asphaltenes" and "maltenes", in contradiction to the Boduszynski−Altgelt model. Here, a heavy distillate cut (atmospheric equivalent boiling point of 523−593 °C) is fractionated according to the number of aromatic rings by HPLC-2. The C7-deasphalted whole oil (C7-DAO), its pentane soluble/insoluble fractions, and each of their ring number fractions are comprehensively characterized by atmospheric pressure photoionization (APPI) FT-ICR MS and tandem mass spectrometry (MS/MS). The HPLC-2 fractions from both the C5-soluble and C5insoluble C7-DAO represent a gradual and continuous progression that fills the compositional "gap" in carbon number and aromaticity between asphaltenes and maltenes as a function of the increasing aromatic ring number, as predicted by Boduszynski. MS/MS results indicate that each ring number fraction comprises both island and archipelago structural motifs. FT-ICR MS reveals a continuum in carbon number and aromaticity. The C5-insoluble C7-DAO components have a similar structure but with higher-order fused ring core structures and are composed of a higher proportion of archipelago structures than the C5-soluble C7-DAO components. Thus, fractionation by the aromatic ring number of "maltenic" and "asphaltenic" species from the C7solubles from a high boiling distillate validates the compositional continuum of petroleum components, and MS/MS exposes the aromatic building blocks of "maltenic" and "asphaltenic" species (structural continuum) that comprise island and archipelago structural motifs.
Of the estimated 5 million barrels of crude oil released into the Gulf of Mexico from the Deepwater Horizon oil spill, a fraction washed ashore onto sandy beaches from Louisiana to the Florida panhandle. Here, we compare the detailed molecular analysis of hydrocarbons in oiled sands from Pensacola Beach to the Macondo wellhead oil (MWO) by electrospray (ESI) and atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to identify major environmental transformation products of polar, high molecular weight (C >25 ) "heavy ends" (high-boiling species) inaccessible by gas chromatography. The petrogenic material isolated from the Pensacola Beach sand displays greater than 2-fold higher molecular complexity than the MWO constituents, most notably in oxygenated species absent in the parent MWO. Surprisingly, the diverse oxygenated hydrocarbons in the Pensacola Beach sediment extracts were dominant in all ionization modes investigated, (±) ESI and (±) APPI. Thus, the molecular-level information highlighted oxygenated species for subsequent "targeted" analyses. First, time-of-flight mass spectrometry analysis of model compounds attributes the unusually large oxygen signal magnitude from positive electrospray to ketone transformation products (O 1 −O 8 classes). Next, negative electrospray mass spectrometry reveals carboxylic acid transformation products. Two-dimensional gas chromatography with mass spectrometry analysis of anion-exchange chromatographic fractions unequivocally verifies the presence of abundant alkyl ketone fragments in sand extracts, and FT-ICR MS analysis reveals the distribution of high-boiling ketone, carboxylic, and higher numbered (3+) oxygen-containing transformation products too polar to be analyzed by gas chromatography. The results expand compositional coverage of oxygen-containing functionalities beyond the classic naphthenic acid type species to complex/mixed ketone, hydroxyl, and carboxylic acid classes of molecules that have been recently identified in produced water, emulsions, and petroleum production deposits.
The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.