The environmental pathogen Cryptococcus neoformans claims over 180,000 lives each year. Survival of this basidiomycete at host CO2 concentrations has only recently been considered an important virulence trait. Through screening gene knockout libraries constructed in a CO2-tolerant clinical strain, we found mutations leading to CO2 sensitivity are enriched in pathways activated by heat stress, including calcineurin, Ras1-Cdc24, cell wall integrity, and Regulator of Ace2 and Morphogenesis (RAM). Overexpression of Cbk1, the conserved terminal kinase of the RAM pathway, partially restored defects of these mutants at host CO2 or temperature levels. In ascomycetes such as Saccharomyces cerevisiae and Candida albicans, transcription factor Ace2 is an important target of Cbk1, activating genes responsible for cell separation. However, no Ace2 homolog or any downstream component of the RAM pathway has been identified in basidiomycetes. Through in vitro evolution and comparative genomics, we characterized mutations in suppressors of cbk1D in C. neoformans that partially rescued defects in CO2 tolerance, thermotolerance, and morphology. One suppressor is the RNA translation repressor Ssd1, which is highly conserved in ascomycetes and basidiomycetes. The other is a novel ribonuclease domain-containing protein, here named PSC1, which is present in basidiomycetes and humans but surprisingly absent in most ascomycetes. Loss of Ssd1 in cbk1D partially restored cryptococcal ability to survive and amplify in the inhalation and intravenous murine models of cryptococcosis. Our discoveries highlight the overlapping regulation of CO2 tolerance and thermotolerance, the essential role of the RAM pathway in cryptococcal adaptation to the host condition, and the potential importance of post-transcriptional control of virulence traits in this global pathogen.
Congenic strains have been utilized in numerous model organisms to determine the genetic underpinning of various phenotypic traits. Congenic strains are usually derived after 10 backcrosses to a recipient parent, at which point they are 99.95% genetically identical to the parental strain. In recent decades, congenic pairs have provided an invaluable tool for genetics and molecular biology research in the Cryptococcus neoformans species complex. Here, we summarize the history of Cryptococcus congenic pairs and their application in Cryptococcus research on topics including the impact of the mating type locus on unisexual reproduction, virulence, tissue tropism, uniparental mitochondrial inheritance, and the genetic underpinning of other various traits. We also discuss the limitations of these approaches and other biological questions, which could be explored by employing congenic pairs.
Across lower eukaryotes, the transcription factor Crz1 is dephosphorylated by calcineurin, which facilitates Crz1 translocation to the nucleus to regulate gene expression. In the fungal pathogen Cryptococcus neoformans, calcineurin–Crz1 signaling maintains calcium homeostasis, thermotolerance, cell wall integrity, and morphogenesis. How Crz1 distinguishes different stressors and differentially regulates cellular responses is poorly understood. Through monitoring Crz1 subcellular localization over time, we found that Crz1 transiently localizes to granules after exposure to high temperature or calcium. These granules also host the phosphatase calcineurin and Pub1, a ribonucleoprotein stress granule marker, suggesting a role of stress granules in modulating calcineurin–Crz1 signaling. Additionally, we constructed and analyzed an array of Crz1 truncation mutants. We identified the intrinsically disordered regions in Crz1 contribute to proper stress granule localization, nuclear localization, and function. Our results provide the groundwork for further determination of the mechanisms behind the complex regulation of Crz1.
Cryptococcus spp. are environmental fungi that first must adapt to the host environment before they can cause life-threatening meningitis in immunocompromised patients. Host CO2 concentrations are 100-fold higher than the external environment and strains unable to grow at host CO2 concentrations are not pathogenic. Using a genetic screening and transcriptional profiling approach, we found that the TOR pathway is critical for C. neoformans adaptation to host CO2 partly through Ypk1-dependent remodeling of phosphatidylserine asymmetry at the plasma membrane. We also identified a candidate C. neoformans floppase (Lat1) that is highly expressed in CO2-sensitive environmental strains and suppresses CO2-induced phosphatidylserine remodeling. Interestingly, regulation of plasma membrane lipid asymmetry by the TOR-Ypk1 axis is distinct in C. neoformans compared to S. cerevisiae. Finally, host CO2 concentrations suppress the C. neoformans pathways that respond to host temperature (Mpk1) and pH (Rim101), indicating that host adaptation requires a stringent balance among distinct stress responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.