The forces that orthodontic appliances apply to the teeth are transmitted through the periodontal ligament (PDL) to the supporting alveolar bone, leading to the deposition or resorption of bone, depending upon whether the tissues are exposed to a tensile or compressive mechanical strain. To evaluate the osteogenic potential of PDL cells, we applied a 12% uni-axial cyclic tensile strain to cultured human PDL cells and analyzed the differential expression of 78 genes implicated in osteoblast differentiation and bone metabolism by real-time RT-PCR array technology. Sixteen genes showed statistically significant changes in expression in response to alterations in their mechanical environment, including cell adhesion molecules and collagen fiber types. Genes linked to the osteoblast phenotype that were up-regulated included BMP2, BMP6, ALP, SOX9, MSX1, and VEGFA; those down-regulated included BMP4 and EGF. This study has expanded our knowledge of the transcriptional profile of PDL cells and identified several new mechanoresponsive genes.
Fixed functional appliances are designed to provide a simple non-compliant solution to orthodontic Class II treatment. Molar correction can be achieved very quickly using these appliances, but the clinician should be wary of unexpected breakages. This case report documents such an occurrence using a unilateral fixed functional appliance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.