Robust immune responses are essential for eliminating pathogens, but must be metered to avoid prolonged immune activation and potential host damage. Upon recognition of microbial DNA, the cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthetase, or cGAS, produces the second messenger cGAMP to initiate the STING pathway and subsequent interferon (IFN) production. We report that the direct interaction between cGAS and the Beclin-1 autophagy protein not only suppresses cGAMP synthesis to halt IFN production upon double stranded (ds)DNA stimulation or herpes simplex virus-1 infection, but also enhances autophagy-mediated degradation of cytosolic pathogen DNAs to prevent excessive cGAS activation and persistent immune stimulation. Specifically, this interaction releases Rubicon, a negative autophagy regulator, from the Beclin-1 complex, activating phosphatidylinositol 3-kinase class III activity and thereby inducing autophagy to remove cytosolic pathogen DNAs. Thus, the cGAS-Beclin-1 interaction shapes innate immune responses by regulating both cGAMP production and autophagy, resulting in well-balanced anti-microbial immune responses.
The use of aptamer-fluorogen complexes is an emerging strategy for RNA imaging. Despite promise for cellular imaging and sensing, the low fluorescence intensity of the Spinach-DFHBI RNA aptamer-fluorogen complex hampers its utility in quantitative live-cell and high-resolution imaging applications. Here we report that illumination of the Spinach-fluorogen complex induces photoconversion and subsequently fluorogen dissociation, leading to fast fluorescence decay and fluorogen concentration-dependent recovery. The fluorescence lifetime of Spinach-DFHBI is 4.0 ± 0.1 ns irrespective of the extent of photoconversion. We detail a low-repetition illumination scheme that enables us to maximize the potential of the Spinach-DFHBI RNA imaging tag in living cells.
The elucidation of molecular targets of bioactive small organic molecules remains a significant challenge in modern biomedical research and drug discovery. This tutorial review summarizes strategies for the derivatization of bioactive small molecules and their use as affinity probes to identify cellular binding partners. Special emphasis is placed on logistical concerns as well as common problems encountered during such target identification experiments. The roadmap provided is a guide through the process of affinity probe selection, target identification, and downstream target validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.