Conservation programs that facilitate restoration of natural areas on private land are one of the best strategies for recovery of valuable wetland acreage in critical ecoregions of the United States. Wetlands enrolled in the Conservation Reserve Enhancement Program (CREP) provide many ecological functions but may be particularly important as habitat for migrant and resident waterbirds; however, use of, and factors associated with use of, CREP wetlands as stopover and breeding sites have not been evaluated. We surveyed a random sample of CREP wetlands in the Illinois River watershed in 2004 and 2005 to quantify use of restored wetlands by spring migrating and breeding waterbirds. Waterbirds used 75% of wetlands during spring migration. Total use‐day abundance for the entire spring migration ranged from 0 to 49,633 per wetland and averaged 6,437 ± 1,887 (SE). Semipermanent wetlands supported the greatest total number of use‐days and the greatest number of use‐days relative to wetland area. Species richness ranged from 0 to 42 (x̄ = 10.0 ± 1.5 [SE]), and 5 of these species were classified as endangered in Illinois. Density of waterfowl breeding pairs ranged from 0.0 pairs/ha to 16.6 pairs/ha (x̄ = 1.9 ± 0.5 [SE] pairs/ha), and 16 species of wetland birds were identified as local breeders. Density of waterfowl broods ranged from 0.0 broods/ha to 3.6 broods/ha and averaged 0.5 ± 0.1 (SE) broods/ha. We also modeled spring stopover use, waterbird species richness, and waterfowl reproduction in relation to spatial, physical, and floristic characteristics of CREP wetlands. The best approximating models to explain variation in all 3 dependent variables included only the covariate accounting for level of hydrologic management (i.e., none, passive, or active). Active management was associated with 858% greater use‐days during spring than sites with only passive water management. Sites where hydrology was passively managed also averaged 402% greater species richness than sites where no hydrologic management was possible. Density of waterfowl broods was 120% greater on passively managed sites than on sites without water management but was 29% less on sites with active compared to passive hydrologic management. Densities of waterfowl broods also were greatest when ratios of open water to cover were 70:30. Models that accounted for vegetation quality and landscape variables ranked lower than models based solely on hydrologic management or vegetation cover in all candidate sets. Although placement and clustering of sites may be critical for maintaining populations of some wetland bird species, these factors appeared to be less important for attracting migrant waterbirds in our study area. In the context of restored CREP wetlands, we suggest the greatest gains in waterbird use and reproduction may be accomplished by emphasizing site‐specific restoration efforts related to hydrology and floristic structure. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):654–664; 2008)
Local and migratory movements aloft have important implications for the ecology and conservation of birds, but are difficult to quantify. Weather surveillance radar (WSR) offers a unique tool for observing movements of birds, but until now has been used primarily to address broad taxonomic questions. Herein, we demonstrate how natural history information and ground-truthing can be used to answer quantitative and taxon-specific questions regarding bird movements on WSR. We found that super-resolution Level II data from the National Oceanic and Atmospheric Administration's mass storage system was the most effective format and source of WSR data, and that several software packages were needed for thorough analysis of WSR data. Using WSR, we identified potential movements of birds emigrating from a waterfowl stopover area in Illinois in fall (1 September-31 December) 2006 and 2007. We compared spatial and temporal patterns of these movements to the natural history of taxa occupying the source habitat and classified these radar targets as dabbling ducks (tribe Anatini). A portable X-band radar measured the cruising heights of ducks at 400-600 m. During fall 2008, we conducted ground-truthing with a thermal infrared camera to enumerate birds passing over our field site during nocturnal migration events. This estimate of bird density, paired with an associated sample of WSR echo strength, provided a mean radar cross section the same as dabbling ducks (112.5 cm 2 ) and supported our natural-historybased classification. Thermal infrared-estimated duck densities explained most of the variation (R 2 = 0.91) in WSR echo strength across seven migration events of varying intensities, suggesting that radar cross sections of dabbling ducks and WSR reflectivity can be used to estimate duck numbers in other comparable contexts. Our results suggest that careful investigation of the spatial and temporal patterns of movements on radar, along with field-based ground-truthing, can be used to study and quantify the movements of specific bird taxa.
The amount of time migrating birds spend at stopover sites, or stopover duration, partially determines an individual's access to resources, the environmental conditions encountered, and the exposure to predation, which in turn affect survival and fecundity. As such, migratory behaviors such as stopover duration can have a considerable effect on populations of migrants and plans for their conservation. This is especially true for migrant waterfowl, which are explicitly conserved through Joint Venture (JV) partnerships under the North American Waterfowl Management Plan. Although waterfowl are one of the most heavily studied taxa, little is known about their stopover behavior due to the scope of migration. Consequently, conservation plans of many mid-migration JVs either omit estimates of stopover duration or rely on antiquated data to estimate energetic requirements. We used weather surveillance radar to identify and enumerate ducks emigrating from an important stopover area in central Illinois. By using radar data in combination with data from weekly aerial inventories, we estimated an average stopover duration for fall-migrating dabbling ducks (tribe Anatini) of 28 days (SD ¼ 12) over 8 years (). Our estimate was similar to the historical estimate of 28 days , which serves as the primary reference for the Upper Mississippi River Great Lakes Region JV conservation plan. In addition to a corroborative mean, we also found considerable inter-annual variation in stopover duration. Estimated annual stopover duration was correlated positively with an index of annual foraging habitat quality (Spearman's rank correlation; r s ¼ 0.83), suggesting ducks may have assessed local conditions and adjusted the spatiotemporal course of fall migration. If the stopover behavior of fall-migrating ducks is flexible and forage-dependent, it is possible ducks allocate their time among sites in a somewhat ideal and optimal fashion, which could substantially affect the way resources are allocated within the spatial context of a JV region. ß 2012 The Wildlife Society.
BackgroundPrevious investigations of autumn-migrating ducks have reported weak connections between weather conditions and the decision to migrate from stopover sites. We leveraged relatively new weather surveillance radar technology to remotely detect departures of discrete groups of various species of migratory dabbling ducks (Anatidae) in autumn to more directly assess the effect of specific weather conditions on departure from discrete stopover sites.MethodsUsing radar data collected over fifteen years (1995–2009), we documented a consistent phenomenon where a single, identifiable group departed from our study area on 30% of days during the autumn study period, and no ducks departed on the other days. We gathered weather variables from nearby stations and used them to develop competing models to explain temporal patterns of departure versus non-departure to better understand the potential mechanisms associated with binomial patterns of departures.ResultsThe best approximating model of departure probability was our integrated model, which included variables accounting for wind aloft direction favorable for departure (i.e., tailwind), absence of precipitation, and a partially or completely clear sky. The integrated model accounted for all model weight in the candidate set and explained 55% of the variation in departure probability. Estimated probability of departure was 0.76 after parameterizing the best model with favorable conditions for all covariates.ConclusionsOur results contrasted those of previous studies of autumn duck migration as a small set of simplistic, extrinsic conditions substantially influenced departure decision.Electronic supplementary materialThe online version of this article (10.1186/s40462-018-0141-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.