The enantiomers of glucuronolactone are excellent chirons for the synthesis of the 10 stereoisomeric 2,5-dideoxy-2,5-iminohexitols by formation of the pyrrolidine ring by nitrogen substitution at C2 and C5, with either retention or inversion of configuration; the stereochemistry at C3 may be adjusted during the synthesis to give seven stereoisomers from each enantiomer. A definitive side-by-side comparison of the glycosidase inhibition of a panel of 13 glycosidases showed that 8 of the 10 stereoisomers showed significant inhibition of at least one glycosidase.
Splitting water: Oxygen‐permeable perovskite hollow‐fiber membranes are used to produce hydrogen and synthesis gas from water and methane (see picture). The process yields valuable compounds, and provides insight into the interplay of catalysis and separation in a membrane reactor.
ABSTRACT:A synthetic method to prepare tricyclic bridged heptenones and hexenones from gold(I)-catalyzed double cycloisomerization of 1,11-dien-3,9-diyne benzoates is described. A divergence in product selectivity was achieved by fine-tuning the steric nature of the ligand of the Au(I) catalyst. In the presence of [MeCNAu(JohnPhos)] + SbF6-(JohnPhos = (1,1'-biphenyl-2-yl)-ditert-butylphosphine) as the catalyst, tandem 1,3-acyloxy migration/metallo-Nazarov cyclization/1,6-enyne addition/Cope rearrangement of the substrate was found to selectively occur to afford the bridged heptenone adduct. In contrast, changing the Au(I) catalyst to [MeCNAu(Me4tBuXPhos)] +
SbF6-(Me4tBuXPhos = di-tert-butyl(2',4',6'-triisopropyl-3,4,5,6-tetramethyl-[1,1'-biphenyl]-2-yl)phosphine) was observed to result in the 1,11-dien-3,9-diyne benzoate undergoing a more rapid tandem 1,3-acyloxy migration/metallo-Nazarov cyclization/[4 + 2]-cyclization pathway to give the bridged hexenone derivative.
A synthetic method to chemoselectively prepare 1H-cyclopenta[b]naphthalenes, cis-cyclopenten-2-yl δ-diketones, and bicyclo[3.2.0]hepta-1,5-dienes efficiently by gold-catalyzed cycloisomerization of 1,6-diyne esters is described. These three product classes were accessed divergently by taking advantage of the electronic and steric differences between a phosphine and NHC (NHC = N-heterocyclic carbene) ligand in the respective gold(I) complexes and that of gold(III) complex combined with substrate substitution patterns and optimized reaction conditions. In the presence of [PhCNAuIPr](+)SbF6(-) (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidine) as the catalyst, substrates with a pendant aryl group at the acetate alkynyl position were found to undergo preferential 1,3-acyloxy migration/5-exo-dig cyclization/Friedel-Crafts reaction to give 1H-cyclopenta[b]naphthalenes. In contrast, the analogous reactions with PicAuCl2 (Pic =2-picolinate) were found to proceed by selective 1,3-acyloxy migration/5-exo-dig cyclization/1,5-acyl migration to afford cis-cyclopenten-2-yl δ-diketones. Changing the catalyst to [MeCNAu(JohnPhos)](+)SbF6(-) (JohnPhos = (1,1'-biphenyl-2-yl)-di-tert-butylphosphine) and the acetate alkynyl position from an aryl to vinyl substituent in the starting ester led to 1,3-acyloxy migration/5-exo-dig cyclization/Prins-type [2 + 2]-cycloaddition to provide bicyclo[3.2.0]hepta-1,5-dienes.
All 16 stereoisomeric N-methyl 5-(hydroxymethyl)-3,4-dihydroxyproline amides have been synthesized from lactones accessible from the enantiomers of glucuronolactone. Nine stereoisomers, including all eight with a (3R)-hydroxyl configuration, are low to submicromolar inhibitors of β-N-acetylhexosaminidases. A structural correlation between the proline amides is found with the ADMDP-acetamide analogues bearing an acetamidomethylpyrrolidine motif. The proline amides are generally more potent than their ADMDP-acetamide equivalents. β-N-Acetylhexosaminidase inhibition by an azetidine ADMDP-acetamide analogue is compared to an azetidine carboxylic acid amide. None of the amides are good α-N-acetylgalactosaminidase inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.