The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an H 1 study of a likely example, the peculiar system NGC 5291. This 1427 Astron.
We present 21 cm observations of Arp 158. We have performed a study of the neutral hydrogen ( H i) to help us understand the overall formation and evolution of this system. This is a disturbed system with distinct optical knots connected by a linear structure embedded in luminous material. There is also a diffuse spray to the southeast. The H i seems to be made up of three distinct, kinematically separate systems. Arp 158 bears a certain optical resemblance to NGC 520 (Arp 157), which has been identified as a mid-stage merger. From our 21 cm observations of Arp 158, we also see a comparable H i content with NGC 520. These similarities suggest that Arp 158 is also an intermediate-stage merger.
No abstract
No abstract
As small spacecraft venture out of Earth orbit, they will encounter challenges not experienced or addressed by the numerous low Earth orbit (LEO) CubeSat and Smallsat missions staged to date. The LEO CubeSats typically use low-cost, proven CubeSat radios, antennas, and university ground stations with small apertures. As more ambitious yet cost-constrained space mission concepts to the Moon and beyond are being developed, CubeSats and smallsats have the potential to provide a more affordable platform for exploring deep space and performing the associated science. Some of the challenges that have, so far, slowed the proliferation of small interplanetary spacecraft are those of communications and navigation. In [23], we discussed the communications and tracking challenges facing interplanetary smallsats and CubeSats, and the next-generation ground network architecture being evolved to mitigate those challenges. In this paper we summarized the results in [23]. Based on our understanding on the mission set of interplanetary smallsats and ground network architecture, we discuss the preliminary thoughts on the operations concept that would transform the current DSN architecture to a federated network architecture that, in addition to traditional deep space missions, can also provide just-in-time communications and tracking services to a large number of interplanetary smallsats/CubeSats. We focus on the following topics:1. DSN compatibility and interfaces. Challenges on integrating heterogeneous non-DSN antennas into the DSN service management and service execution framework.3. Cross-support with university antennas, with other space agencies, and with other research centers.4. Network planning and scheduling concepts that maximize pass opportunities for smallsats and CubeSats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.