We present the design of an online social skills development interface for teenagers with autism spectrum disorder (ASD). The interface is intended to enable private conversation practice anywhere, anytime using a web-browser. Users converse informally with a virtual agent, receiving feedback on nonverbal cues in realtime, and summary feedback. The prototype was developed in consultation with an expert UX designer, two psychologists, and a pediatrician. Using the data from 47 individuals, feedback and dialogue generation were automated using a hidden Markov model and a schema-driven dialogue manager capable of handling multi-topic conversations. We conducted a study with nine high-functioning ASD teenagers. Through a thematic analysis of post-experiment interviews, identified several key design considerations, notably: 1) Users should be fully briefed at the outset about the purpose and limitations of the system, to avoid unrealistic expectations. 2) An interface should incorporate positive acknowledgment of behavior change. 3) Realistic appearance of a virtual agent and responsiveness are important in engaging users. 4) Conversation personalization, for instance in prompting laconic users for more input and reciprocal questions, would help the teenagers engage for longer terms and increase the system's utility. CCS CONCEPTS • Human-centered computing → Empirical studies in HCI .
We investigate which patterns of lexically triggered doxastic, bouletic, neg(ation)-raising, and veridicality inferences are (un)attested across clause-embedding verbs in English. To carry out this investigation, we use a multiview mixed effects mixture model to discover the inference patterns captured in three lexicon-scale inference judgment datasets: two existing datasets, MegaVeridicality and MegaNegRaising, which capture veridicality and neg-raising inferences across a wide swath of the English clause-embedding lexicon, and a new dataset, MegaIntensionality, which similarly captures doxastic and bouletic inferences. We focus in particular on inference patterns that are correlated with morphosyntactic distribution, as determined by how well those patterns predict the acceptability judgments in the MegaAcceptability dataset. We find that there are 15 such patterns attested. Similarities among these patterns suggest the possibility of underlying lexical semantic components that give rise to them. We use principal component analysis to discover these components and suggest generalizations that can be derived from them.
Unscoped episodic logical form (ULF) is a semantic representation capturing the predicateargument structure of English within the episodic logic formalism in relation to the syntactic structure, while leaving scope, word sense, and anaphora unresolved. We describe how ULF can be used to generate natural language inferences that are grounded in the semantic and syntactic structure through a small set of rules defined over interpretable predicates and transformations on ULFs. The semantic restrictions placed by ULF semantic types enables us to ensure that the inferred structures are semantically coherent while the nearness to syntax enables accurate mapping to English. We demonstrate these inferences on four classes of conversationallyoriented inferences in a mixed genre dataset with 68.5% precision from human judgments.
In this paper we address the problem of turn-taking prediction in open-ended communication between humans and dialogue agents. In a non-task-oriented interaction with dialogue agents, user inputs are apt to be grammatically and lexically diverse, and at times quite lengthy, with many pauses; all of this makes it harder for the system to decide when to jump in. As a result recent turn-taking predictors designed for specific tasks or for human-human interactions will scarcely be applicable. In this paper we focus primarily on the predictive potential of linguistic features, including lexical, syntactic and semantic features, as well as timing features, whereas past work has typically placed more emphasis on prosodic features, sometimes supplemented with non-verbal behaviors such as gaze and head movements. The basis for our study is a corpus of 15 "friendly" dialogues between humans and a (Wizard-of-Oz enabled) virtual dialogue agent, annotated for pause times and types. The model of turn-taking obtained by supervised learning predicts turn-taking points with increasing accuracy using only prosodic features, only timing and speech rate features, only lexical and syntactic features, and achieves state-of-the art performance with a mixture-of-experts model combining these features along with a semantic criterion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.