The observation of a similar cell persistence after IC injections with and without balloon occlusion suggests that the balloon procedures currently applied in clinical studies are not necessary for cell deposit. If longer term persistence of cells plays a role for the clinical benefit of cardiac cell therapy, IM injection may be superior to IC applications.
Erythropoetin (EPO), a stimulator of erythropoiesis, was previously shown to stimulate angiogenesis and proliferation of endothelial cells. Here, we investigated and compared the influence of EPO on cell number, proliferation, apoptosis, migration, and differentiation of endothelial cells in intact mouse embryoid bodies (EB), isolated endothelial cells from EB (EBEC), and adult human endothelial progenitor cells (hEPC). EB were treated with EPO (0.5 U/ml) immediately after plating was completed ( day 5+0) or 3 days later. EPO treatment was continued until days 5+3 or 5+6. Cultured EBEC were treated 3 days after being plated, and primary hEPC from young healthy adults were treated 5 days after being plated with EPO for 48 h. Immunohistochemistry was performed with anti-PECAM (CD31), anti-Ki67, anti-CD34, anti-CD133, anti-EphB4, and anti-ephrinB2 antibodies. In all, mouse EB and EBEC and hEPC, EPO-treatment resulted in increased number of endothelial cells, increased proliferation, decreased apoptosis, and enhanced migration. In EB, this EPO effect was most pronounced when treatment was begun early ( day 5+0) and was accompanied by an enhanced endothelial tube formation. In EBEC and hEPC, EPO shifted the phenotypic differentiation toward an increased ratio of EphB4-positive cells, i.e., toward a venous phenotype. These results are consistent with an important role of EPO for the number, proliferation, apoptosis, function, and phenotypical development of immature endothelial cells, which persists from early development through adulthood. They provide additional and further evidence for a strong interrelation between hematopoiesis and vasculogenesis/angiogenesis (sharing the same pathways), which may be important in many physiological and pathophysiological conditions.
Stem cell-derived cardiomyocytes (CMs) are often electrophysiologically immature and heterogeneous, which represents a major barrier to their in vitro and in vivo application. Therefore, the purpose of this study was to examine whether Neuregulin-1b (NRG-1b) treatment could enhance in vitro generation of mature ''workingtype'' CMs from induced pluripotent stem (iPS) cells and assess the regenerative effects of these CMs on cardiac tissue after acute myocardial infarction (AMI). With that purpose, adult mouse fibroblast-derived iPS from a-MHC-GFP mice were derived and differentiated into CMs through NRG-1b and/or dimethyl sulfoxide (DMSO) treatment. Cardiac specification and maturation of the iPS was analyzed by gene expression array, quantitative real-time polymerase chain reaction, immunofluorescence, electron microscopy, and patch-clamp techniques. In vivo, the iPS-derived CMs or culture medium control were injected into the peri-infarct region of hearts after coronary artery ligation, and functional and histology changes were assessed from 1 to 8 weeks post-transplantation. On differentiation, the iPS displayed early and robust in vitro cardiogenesis, expressing cardiac-specific genes and proteins. More importantly, electrophysiological studies demonstrated that a more mature ventricular-like cardiac phenotype was achieved when cells were treated with NRG-1b and DMSO compared with DMSO alone. Furthermore, in vivo studies demonstrated that iPS-derived CMs were able to engraft and electromechanically couple to heart tissue, ultimately preserving cardiac function and inducing adequate heart tissue remodeling. In conclusion, we have demonstrated that combined treatment with NRG-1b and DMSO leads to efficient differentiation of iPS into ventricular-like cardiac cells with a higher degree of maturation, which are capable of preserving cardiac function and tissue viability when transplanted into a mouse model of AMI.
Bone marrow cells are used for cell therapy after myocardial infarction (MI) with promising results. However, cardiac persistence of transplanted cells is rather low. Here, we investigated strategies to increase the survival and cardiac persistence of mononuclear (MNC) and mesenchymal (MSC) bone marrow cells transplanted into infarcted rat hearts. MNC and MSC (male Fischer 344 rats) were treated with different doses of PDGF-BB prior to intramyocardial injection into border zone of MI (syngeneic females, permanent LAD ligation) and hearts were harvested after 5 days and 3 weeks. In additional experiments, untreated MNC and MSC were injected immediately after permanent or temporary LAD ligation and hearts were harvested after 48 h, 5 days, 3 weeks, and 6 weeks. DNA of the hearts was isolated and the number of donor cells was determined by quantitative real-time PCR with Y chromosome-specific primers. There was a remarkable though not statistically significant (p = 0.08) cell loss of ϳ46% between 5 days and 3 weeks in the control group, which was completely inhibited by treatment with high dose of PDGF-BB. Forty-eight hours after reperfusion only 10% of injected MSC or 1% for MNC were found in the heart, decreasing to 1% for MSC and 0.5% for MNC after 6 weeks. These numbers were lower than after permanent LAD ligation for both MNC and MSC at all time points studied. Treatment with PDGF-BB seems to prevent loss of transplanted bone marrow cells at later times presumably by inhibition of apoptosis, while reperfusion of the occluded artery enhances cell loss at early times putatively due to enhanced early wash-out. Further investigations are needed to substantially improve the persistence and survival of grafted bone marrow cells in infarcted rat hearts, in order to fully explore the therapeutic potential of this novel treatment modality for myocardial repair.Key words: Myocardial infarction; Cell therapy; Stem cells; Transplantation; Bone marrow cells; Growth factors INTRODUCTIONchymal bone marrow cells within the infarcted rat heart decreases rapidly to only a few percent of the originally transplanted cell number at 6 weeks after intramyocariCardiac cell therapy with bone marrow cells after myocardial infarction was demonstrated to improve cardal cell injection (7). The aim of this study was to increase the midterm survival by either cell treatment with diac function in several large randomized clinical trials (12,17), but, on the other hand, there was no benefit the growth factor and inhibitor of apoptosis PDGF-BB prior to transplantation or reperfusion of the infarcted observed in other studies (4,5,10). Although it is still unknown how bone marrow cells take action on cardiac vessel (improved nutrient and oxygen supply of the cells). regeneration, the number of transplanted cells within the MATERIALS AND METHODS injured myocardium is likely to be an important factor. In previous studies, we showed that after a good engraftProtocols were approved by the regional government's Animal Care and Use Committee (Bezirks...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.