Thermally activated delayed fluorescence (TADF) emitters consisting of donor and acceptor molecules are potentially highly interesting for electroluminescence (EL) applications. Their strong fluorescence emission is considered to be due to reverse intersystem crossing (RISC), in which energetically close triplet and singlet charge transfer (CT) states, also called exciplex states, are involved. In order to distinguish between different mechanisms and excited states involved, temperature-dependent spin-sensitive measurements on organic light-emitting diodes (OLEDs) and thin films are essential. In our work we apply continuous wave (cw) and time-resolved (tr) photoluminescence (PL) spectroscopy as well as spin-sensitive electroluminescence and PL detected magnetic resonance to films and OLED devices made of three different donor:acceptor combinations. Our results clearly show that triplet exciplex states are formed and contribute to delayed fluorescence (DF) via RISC in both electrically driven OLEDs and optically excited films. In the same sample set we also found molecular triplet excitons, which occurred only in PL experiments under optical excitation and for some material systems only at low temperatures. We conclude that in all investigated molecular systems exciplex states formed at the donor:acceptor interface are responsible for thermally activated DF in OLEDs with distinct activation energies. Molecular (local) triplet exciton states are also detectable, but only under optical excitation, while they are not found in OLEDs when excited states are generated electrically. We believe that the weakly bound emissive exciplex states and the strongly bound non-emissive molecular triplet excited states coexist in the TADF emitters, and it is imperative to distinguish between optical and electrical generation paths as they may involve different intermediate excited states.
Organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) utilize molecular systems with a small energy splitting between singlet and triplet states. This can either be realized in intramolecular charge transfer states of molecules with near‐orthogonal donor and acceptor moieties or in intermolecular exciplex states formed between a suitable combination of individual donor and acceptor materials. Here, 4,4′‐(9H,9′H‐[3,3′‐bicarbazole]‐9,9′‐diyl)bis(3‐(trifluoromethyl) benzonitrile) (pCNBCzoCF3) is investigated, which shows intramolecular TADF but can also form exciplex states in combination with 4,4′,4′′‐tris[phenyl(m‐tolyl)amino]triphenylamine (m‐MTDATA). Orange emitting exciplex‐based OLEDs additionally generate a sky‐blue emission from the intramolecular emitter with an intensity that can be voltage‐controlled. Electroluminescence detected magnetic resonance (ELDMR) is applied to study the thermally activated spin‐dependent triplet to singlet up‐conversion in operating devices. Thereby, intermediate excited states involved in OLED operation can be investigated and the corresponding activation energy for both, intra‐ and intermolecular based TADF can be derived. Furthermore, a lower estimate is given for the extent of the triplet wavefunction to be ≥ 1.2 nm. Photoluminescence detected magnetic resonance (PLDMR) reveals the population of molecular triplets in optically excited thin films. Overall, the findings allow to draw a comprehensive picture of the spin‐dependent emission from intra‐ and intermolecular TADF OLEDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.