For the first time, a coding complete genome of an RNA virus has been sequenced in its original form. Previously, RNA was sequenced by the chemical degradation of radiolabeled RNA, a difficult method that produced only short sequences. Instead, RNA has usually been sequenced indirectly by copying it into cDNA, which is often amplified to dsDNA by PCR and subsequently analyzed using a variety of DNA sequencing methods. We designed an adapter to short highly conserved termini of the influenza A virus genome to target the (-) sense RNA into a protein nanopore on the Oxford Nanopore MinION sequencing platform. Utilizing this method with total RNA extracted from the allantoic fluid of influenza rA/Puerto Rico/8/1934 (H1N1) virus infected chicken eggs (EID50 6.8 × 109), we demonstrate successful sequencing of the coding complete influenza A virus genome with 100% nucleotide coverage, 99% consensus identity, and 99% of reads mapped to influenza A virus. By utilizing the same methodology one can redesign the adapter in order to expand the targets to include viral mRNA and (+) sense cRNA, which are essential to the viral life cycle, or other pathogens. This approach also has the potential to identify and quantify splice variants and base modifications, which are not practically measurable with current methods.
While working overnight at a swine exhibition, we identified an influenza A virus (IAV) outbreak in swine, Nanopore sequenced 13 IAV genomes from samples we collected, and predicted in real time that these viruses posed a novel risk to humans due to genetic mismatches between the viruses and current prepandemic candidate vaccine viruses (CVVs). We developed and used a portable IAV sequencing and analysis platform called Mia (Mobile Influenza Analysis) to complete and characterize full-length consensus genomes approximately 18 h after unpacking the mobile lab. Exhibition swine are a known source for zoonotic transmission of IAV to humans and pose a potential pandemic risk. Genomic analyses of IAV in swine are critical to understanding this risk, the types of viruses circulating in swine, and whether current vaccines developed for use in humans would be predicted to provide immune protection. Nanopore sequencing technology has enabled genome sequencing in the field at the source of viral outbreaks or at the bedside or pen-side of infected humans and animals. The acquired data, however, have not yet demonstrated real-time, actionable public health responses. The Mia system rapidly identified three genetically distinct swine IAV lineages from three subtypes, A(H1N1), A(H3N2), and A(H1N2). Analysis of the hemagglutinin (HA) sequences of the A(H1N2) viruses identified >30 amino acid differences between the HA1 of these viruses and the most closely related CVV. As an exercise in pandemic preparedness, all sequences were emailed to CDC collaborators who initiated the development of a synthetically derived CVV. IMPORTANCE Swine are influenza virus reservoirs that have caused outbreaks and pandemics. Genomic characterization of these viruses enables pandemic risk assessment and vaccine comparisons, though this typically occurs after a novel swine virus jumps into humans. The greatest risk occurs where large groups of swine and humans comingle. At a large swine exhibition, we used Nanopore sequencing and on-site analytics to interpret 13 swine influenza virus genomes and identified an influenza virus cluster that was genetically highly varied to currently available vaccines. As part of the National Strategy for Pandemic Preparedness exercises, the sequences were emailed to colleagues at the CDC who initiated the development of a synthetically derived vaccine designed to match the viruses at the exhibition. Subsequently, this virus caused 14 infections in humans and was the dominant U.S. variant virus in 2018.
Recombination between SARS-CoV-2 virus variants can result in different viral properties (e.g., infectiousness or pathogenicity). In this report, we describe viruses with recombinant genomes containing signature mutations from Delta and Omicron variants. These genomes are the first evidence for a Delta-Omicron hybrid Spike protein in the United States.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019, and the outbreak rapidly evolved into the current coronavirus disease pandemic. SARS-CoV-2 is a respiratory virus that causes symptoms similar to those caused by infl uenza A and B viruses. On July 2, 2020, the US Food and Drug Administration granted emergency use authorization for in vitro diagnostic use of the Infl uenza SARS-CoV-2 Multiplex Assay. This assay detects infl uenza A virus at 10 2.0 , infl uenza B virus at 10 2.2 , and SARS-CoV-2 at 10 0.3 50% tissue culture or egg infectious dose, or as few as 5 RNA copies/reaction. The simultaneous detection and diff erentiation of these 3 major pathogens increases overall testing capacity, conserves resources, identifi es co-infections, and enables effi cient surveillance of infl uenza viruses and SARS-CoV-2.
E merging variants of SARS-CoV-2 are characterized and monitored closely by national genomic surveillance. In addition to sequencing efforts from US public health, academic, and commercial laboratories, the Centers for Disease Control and Prevention (CDC) collects and sequences SARS-CoV-2 specimens from 64 partners across state, tribal, local, and territorial public health agencies through the National SARS-CoV-2 Strain Surveillance program (https:// www.cdc.gov/coronavirus/2019-ncov/variants/ cdc-role-surveillance.html) and funds SARS-CoV-2 sequencing through a nationwide network of commercial laboratory testing companies. To date, these efforts have contributed 1.8 million SARS-CoV-2 genomes from the United States to public repositories. The purpose of this genomic surveillance system is to detect and respond dynamically to new and changing SARS-CoV-2 variants (1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.