To better predict ecological consequences of changing Arctic sea ice environments, we aimed to quantify the contribution of ice algae-produced carbon (a Ice ) to pelagic food webs in the central Arctic Ocean. Eight abundant under-ice fauna species were submitted to fatty acid (FA) analysis, bulk stable isotope analysis (BSIA) of nitrogen (d 15 N) and carbon (d 13 C) isotopic ratios, and compound-specific stable isotope analysis (CSIA) of d 13 C in trophic marker FAs. A high mean contribution a Ice was found in Apherusa glacialis and other sympagic (ice-associated) amphipods (BSIA: 87% to 91%, CSIA: 58% to 92%). The pelagic copepods Calanus glacialis and C. hyperboreus, and the pelagic amphipod Themisto libellula showed substantial, but varying a Ice values (BSIA: 39% to 55%, CSIA: 23% to 48%). Lowest a Ice mean values were found in the pteropod Clione limacina (BSIA: 30%, CSIA: 14% to 18%). Intra-specific differences in FA compositions related to two different environmental regimes were more pronounced in pelagic than in sympagic species. A comparison of mixing models using different isotopic approaches indicated that a model using d 13 C signatures from both diatomspecific and dinoflagellate-specific marker FAs provided the most conservative estimate of a Ice . Our results imply that ecological key species of the central Arctic Ocean thrive significantly on carbon synthesized by ice algae. Due to the close connectivity between sea ice and the pelagic food web, changes in sea ice coverage and ice algal production will likely have important consequences for food web functioning and carbon dynamics of the pelagic system.
Multiscale sea ice algae observations are fundamentally important for projecting changes to sea ice ecosystems, as the physical environment continues to change. In this study, we developed upon previously established methodologies for deriving sea ice‐algal chlorophyll a concentrations (chl a) from spectral radiation measurements, and applied these to larger‐scale spectral surveys. We conducted four different under‐ice spectral measurements: irradiance, radiance, transmittance, and transflectance, and applied three statistical approaches: Empirical Orthogonal Functions (EOF), Normalized Difference Indices (NDI), and multi‐NDI. We developed models based on ice core chl a and coincident spectral irradiance/transmittance (N = 49) and radiance/transflectance (N = 50) measurements conducted during two cruises to the central Arctic Ocean in 2011 and 2012. These reference models were ranked based on two criteria: mean robustness R2 and true prediction error estimates. For estimating the biomass of a large‐scale data set, the EOF approach performed better than the NDI, due to its ability to account for the high variability of environmental properties experienced over large areas. Based on robustness and true prediction error, the three most reliable models, EOF‐transmittance, EOF‐transflectance, and NDI‐transmittance, were applied to two remotely operated vehicle (ROV) and two Surface and Under‐Ice Trawl (SUIT) spectral radiation surveys. In these larger‐scale chl a estimates, EOF‐transmittance showed the best fit to ice core chl a. Application of our most reliable model, EOF‐transmittance, to an 85 m horizontal ROV transect revealed large differences compared to published biomass estimates from the same site with important implications for projections of Arctic‐wide ice‐algal biomass and primary production.
Arctic sea-ice decline is expected to have a significant impact on Arctic marine ecosystems. Ice-associated fauna play a key role in this context because they constitute a unique part of Arctic biodiversity and transmit carbon from sea-ice algae into pelagic and benthic food webs. Our study presents the first regional-scale record of under-ice faunal distribution and the environmental characteristics of under-ice habitats throughout the Eurasian Basin. Sampling was conducted with a Surface and Under-Ice Trawl, equipped with a sensor array recording ice thickness and other physical parameters during trawling. We identified 2 environmental regimes, broadly coherent with the Nansen and Amundsen Basins. The Nansen Basin regime was distinguished from the Amundsen Basin regime by heavier sea-ice conditions, higher surface salinities and higher nitrate + nitrite concentrations. We found a diverse (28 species) under-ice community throughout the Eurasian Basin. Change in community structure reflected differences in the relative contribution of abundant species. Copepods (Calanus hyperboreus and C. glacialis) dominated in the Nansen Basin regime. In the Amundsen Basin regime, amphipods (Apherusa glacialis, Themisto libellula) dominated. Polar cod Boreogadus saida was present throughout the sampling area. Abrupt changes from a dominance of ice-associated amphipods at ice-covered stations to a dominance of pelagic amphipods (T. libellula) at nearby ice-free stations emphasised the decisive influence of sea ice on small-scale patterns in the surface-layer community. The observed response in community composition to different environmental regimes indicates potential long-term alterations in Arctic marine ecosystems as the Arctic Ocean continues to change.
In the Arctic Ocean, sea-ice habitats are undergoing rapid environmental change. Polar cod (Boreogadus saida) is the most abundant fish known to reside under the pack-ice. The under-ice distribution, association with sea-ice habitat properties and origins of polar cod in the central Arctic Ocean, however, are largely unknown. During the RV Polarstern expedition ARK XXVII/3 in the Eurasian Basin in 2012, we used for the first time in Arctic waters a Surface and Under Ice Trawl with an integrated bio-environmental sensor array. Polar cod was ubiquitous throughout the Eurasian Basin with a median abundance of 5000 ind. km -2 . The under-ice population consisted of young specimens with a total length between 52 and 140 mm, dominated by 1-year-old fish. Higher fish abundance was associated with thicker ice, higher ice coverage and lower surface salinity, or with higher densities of the ice-amphipod Apherusa glacialis. The fish were in good condition and well fed according to various indices. Backtracking of the sea-ice indicated that sea-ice sampled in the Amundsen Basin originated from the Laptev Sea coast, while sea-ice sampled in the Nansen Basin originated from the Kara Sea. Assuming that fish were following the ice drift, this suggests that under-ice polar cod distribution in the Eurasian Basin is dependent on the coastal populations where the sea-ice originates. The omnipresence of polar cod in the Eurasian Basin, in a good body condition, suggests that the central Arctic under-ice habitats may constitute a favourable environment for this species survival, a potential vector of genetic exchange and a recruitment source for coastal populations around the Arctic Ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.