Coarse-graining of fully atomistic molecular dynamics simulations is a long-standing goal in order to allow the description of processes occurring on biologically relevant timescales. For example, the prediction of pathways, rates and rate-limiting steps in protein-ligand unbinding is crucial for modern drug discovery. To achieve the enhanced sampling, we perform dissipation-corrected targeted molecular dynamics simulations, which yield free energy and friction profiles of molecular processes under consideration. Subsequently, we use these fields to perform temperature-boosted Langevin simulations which account for the desired kinetics occurring on multisecond timescales and beyond. Adopting the dissociation of solvated sodium chloride, trypsin-benzamidine and Hsp90-inhibitor protein-ligand complexes as test problems, we reproduce rates from molecular dynamics simulation and experiments within a factor of 2-20, and dissociation constants within a factor of 1-4. Analysis of friction profiles reveals that binding and unbinding dynamics are mediated by changes of the surrounding hydration shells in all investigated systems.
Enhanced sampling techniques represent a versatile approach to account for rare conformational transitions in biomolecules. A particularly promising strategy is to combine massive parallel computing of short molecular dynamics (MD) trajectories (to sample the free energy landscape of the system) with Markov state modeling (to rebuild the kinetics from the sampled data). To obtain well-distributed initial structures for the short trajectories, it is proposed to employ metadynamics MD, which quickly sweeps through the entire free energy landscape of interest. Being only used to generate initial conformations, the implementation of metadynamics can be simple and fast. The conformational dynamics of helical peptide Aib is adopted to discuss various technical issues of the approach, including metadynamics settings, minimal number and length of short MD trajectories, and the validation of the resulting Markov models. Using metadynamics to launch some thousands of nanosecond trajectories, several Markov state models are constructed that reveal that previous unbiased MD simulations of in total 16 μs length cannot provide correct equilibrium populations or qualitative features of the pathway distribution of the short peptide.
The accurate definition of suitable metastable conformational states is fundamental for the construction of a Markov state model describing biomolecular dynamics. Following the dimensionality reduction of a molecular dynamics trajectory, these microstates can be generated by a recently proposed density-based geometrical clustering algorithm [J. Chem. Theory Comput. 12, 2426 (2016)], which by design cuts the resulting clusters at the energy barriers and allows for a data-based identification of all parameters. Nevertheless, projection artifacts due to the inevitable restriction to a low-dimensional space combined with insufficient sampling often leads to a misclassification of sampled points in the transition regions. This typically causes intrastate fluctuations to be mistaken as interstate transitions, which leads to artificially short life time of the metastable states. As a simple but effective remedy, dynamical coring requires that the trajectory spends a minimum time in the new state for the transition to be counted. Adopting molecular dynamics simulations of two well-established biomolecular systems (alanine dipeptide and villin headpiece), dynamical coring is shown to considerably improve the Markovianity of the resulting metastable states, which is demonstrated by Chapman-Kolmogorov tests and increased implied timescales of the Markov model. Providing high structural and temporal resolution, the combination of density-based clustering and dynamical coring is particularly suited to describe the complex structural dynamics of unfolded biomolecules.
Markov processes provide a popular approach to construct low-dimensional dynamical models of a complex biomolecular system. By partitioning the conformational space into metastable states, protein dynamics can be approximated in terms of memory-less jumps between these states, resulting in a Markov state model (MSM). Alternatively, suitable low-dimensional collective variables may be identified to construct a data-driven Langevin equation (dLE). In both cases, the underlying Markovian approximation requires a propagation time step (or lag time) δt that is longer than the memory time τM of the system. On the other hand, δt needs to be chosen short enough to resolve the system timescale τS of interest. If these conditions are in conflict (i.e., τM > τS), one may opt for a short time step δt = τS and try to account for the residual non-Markovianity of the data by optimizing the transition matrix or the Langevin fields such that the resulting model best reproduces the observables of interest. In this work, rescaling the friction tensor of the dLE based on short-time information in order to obtain the correct long-time behavior of the system is suggested. Adopting various model problems of increasing complexity, including a double-well system, the dissociation of solvated sodium chloride, and the functional dynamics of T4 lysozyme, the virtues and shortcomings of the rescaled dLE are discussed and compared to the corresponding MSMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.