Smart implants are implantable devices that provide not only therapeutic benefits but also have diagnostic capabilities. The integration of smart implants into daily clinical practice has the potential for massive cost savings to the health care system. Applications for smart orthopedic implants have been identified for knee arthroplasty, hip arthroplasty, spine fusion, fracture fixation and others. To date, smart orthopedic implants have been used to measure physical parameters from inside the body, including pressure, force, strain, displacement, proximity and temperature. The measurement of physical stimuli is achieved through integration of application-specific technology with the implant. Data from smart implants have led to refinements in implant design, surgical technique and strategies for postoperative care and rehabilitation. In spite of decades of research, with very few exceptions, smart implants have not yet become a part of daily clinical practice. This is largely because integration of current sensor technology necessitates significant modification to the implants. While the technology underlying smart implants has matured significantly over the last several decades, there are still significant technical challenges that need to be overcome before smart implants become part of mainstream health care. Sensors for next-generation smart implants will be small, simple, robust and inexpensive and will necessitate little to no modification to existing implant designs. With rapidly advancing technology, the widespread implementation of smart implants is near. New sensor technology that minimizes modifications to existing implants is the key to enabling smart implants into daily clinical practice.
The diagnosis of fracture nonunion following plate osteosynthesis is subjective and frequently ambiguous. Initially following osteosynthesis, loads applied to the bone are primarily transmitted through the plate. However, as callus stiffness increases, the callus is able to bear load proportional to its stiffness while forces through the plate decrease. The purpose of this study was to use a “smart” fracture plate to distinguish between phases of fracture healing by measuring forces transmitted through the plate. A wireless force sensor and small adapter were placed on the outside of a distal femoral locking plate. The adapter converts the slight bending of the plate under axial load into a transverse force which is measurable by the sensor. An osteotomy was created and then plated in the distal femur of biomechanical Sawbones. Specimens were loaded to simulate single‐leg stance first with the osteotomy defect empty (acute healing), then sequentially filled with silicone (early callus) and then polymethyl methacrylate (hard callus). There was a strong correlation between applied axial load and force measured by the “smart” plate. Data demonstrate statistically significant differences between each phase of healing with as little as 150 N of axial load applied to the femur. Forces measured in the plate were significantly different between acute (100%), early callus (66.4%), and hard callus (29.5%). This study demonstrates the potential of a “smart” fracture plate to distinguish between phases of healing. These objective data may enable early diagnosis of nonunion and enhance outcomes for patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.