Parallel matrix multiplication is one of the most studied fundamental problems in distributed and high performance computing. We obtain a new parallel algorithm that is based on Strassen's fast matrix multiplication and minimizes communication. The algorithm outperforms all known parallel matrix multiplication algorithms, classical and Strassen-based, both asymptotically and in practice.A critical bottleneck in parallelizing Strassen's algorithm is the communication between the processors. Ballard, Demmel, Holtz, and Schwartz (SPAA'11) prove lower bounds on these communication costs, using expansion properties of the underlying computation graph. Our algorithm matches these lower bounds, and so is communication-optimal. It exhibits perfect strong scaling within the maximum possible range. * Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. SPAA'12, June 25-27, 2012, Pittsburgh, Pennsylvania, USA. Copyright 2012 ACM 978-1-4503-0743-7/11/06 ...$10.00.Benchmarking our implementation on a Cray XT4, we obtain speedups over classical and Strassen-based algorithms ranging from 24% to 184% for a fixed matrix dimension n = 94080, where the number of nodes ranges from 49 to 7203.Our parallelization approach generalizes to other fast matrix multiplication algorithms.
Abstract-Communication-optimal algorithms are known for square matrix multiplication. Here, we obtain the first communication-optimal algorithm for all dimensions of rectangular matrices. Combining the dimension-splitting technique of Frigo, Leiserson, Prokop and Ramachandran (1999) with the recursive BFS/DFS approach of Ballard, Demmel, Holtz, Lipshitz and Schwartz (2012) allows for a communication-optimal as well as cache-and network-oblivious algorithm. Moreover, the implementation is simple: approximately 50 lines of code for the shared-memory version. Since the new algorithm minimizes communication across the network, between NUMA domains, and between levels of cache, it performs well in practice on both shared-and distributed-memory machines. We show significant speedups over existing parallel linear algebra libraries both on a 32-core shared-memory machine and on a distributed-memory supercomputer.
Parallel algorithms for sparse matrix-matrix multiplication typically spend most of their time on inter-processor communication rather than on computation, and hardware trends predict the relative cost of communication will only increase. Thus, sparse matrix multiplication algorithms must minimize communication costs in order to scale to large processor counts.In this paper, we consider multiplying sparse matrices corresponding to Erdős-Rényi random graphs on distributed-memory parallel machines. We prove a new lower bound on the expected communication cost for a wide class of algorithms. Our analysis of existing algorithms shows that, while some are optimal for a limited range of matrix density and number of processors, none is optimal in general. We obtain two new parallel algorithms and prove that they match the expected communication cost lower bound, and hence they are optimal.
Parallel algorithms for sparse matrix-matrix multiplication typically spend most of their time on inter-processor communication rather than on computation, and hardware trends predict the relative cost of communication will only increase. Thus, sparse matrix multiplication algorithms must minimize communication costs in order to scale to large processor counts.In this paper, we consider multiplying sparse matrices corresponding to Erdős-Rényi random graphs on distributed-memory parallel machines. We prove a new lower bound on the expected communication cost for a wide class of algorithms. Our analysis of existing algorithms shows that, while some are optimal for a limited range of matrix density and number of processors, none is optimal in general. We obtain two new parallel algorithms and prove that they match the expected communication cost lower bound, and hence they are optimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.