No abstract
I am looking for suggestions for a research project in applied/numerical linear algebra. As far as requirements, there really aren't any except Applied Numerical Linear Algebra-James W. Demmel.djvu Linear Equation Solving. Estimating Condition Numbers. To compute a practical error bound based on a bound like 2.5, we need to estimate A?1. This is Numerical Linear Algebra Numerical linear algebra
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer., ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expresse_ herein do not nex,essari'y state or reflect those of the _'_"__"i[_ United States Government or any agency thereof.
We i n v estigate several ways to improve the performance of sparse LU factorization with partial pivoting, as used to solve unsymmetric linear systems. To perform most of the numerical computation in dense matrix kernels, we i n troduce the notion of unsymmetric supernodes. To better exploit the memory hierarchy, w e i n troduce unsymmetric supernode-panel updates and two-dimensional data partitioning. To speed up symbolic factorization, we use Gilbert and Peierls's depth-rst search with Eisenstat and Liu's symmetric structural reductions. We h a v e implemented a sparse LU code using all these ideas. We present experiments demonstrating that it is signi cantly faster than earlier partial pivoting codes. We also compare performance with Umfpack, which uses a multifrontal approach; our code is usually faster.Keywords: sparse matrix algorithms; unsymmetric linear systems; supernodes; column elimination tree; partial pivoting. AMSMOS subject classi cations: 65F05, 65F50. Computing Reviews descriptors: G.1.3 Numerical Analysis : Numerical Linear Algebra | Linear systems direct and iterative methods, Sparse and very large systems.
We present parallel and sequential dense QR factorization algorithms that are both optimal (up to polylogarithmic factors) in the amount of communication they perform, and just as stable as Householder QR. Our first algorithm, Tall Skinny QR (TSQR), factors m × n matrices in a one-dimensional (1-D) block cyclic row layout, and is optimized for m n. Our second algorithm, CAQR (Communication-Avoiding QR), factors general rectangular matrices distributed in a two-dimensional block cyclic layout. It invokes TSQR for each block column factorization.The new algorithms are superior in both theory and practice. We have extended known lower bounds on communication for sequential and parallel matrix multiplication to provide latency lower bounds, and show these bounds apply to the LU and QR decompositions. We not only show that our QR algorithms attain these lower bounds (up to polylogarithmic factors), but that existing LAPACK and ScaLAPACK algorithms perform asymptotically more communication. We also point out recent LU algorithms in the literature that attain at least some of these lower bounds.Both TSQR and CAQR have asymptotically lower latency cost in the parallel case, and asymptotically lower latency and bandwidth costs in the sequential case. In practice, we have implemented parallel TSQR on several machines, with speedups of up to 6.7× on 16 processors of a Pentium III cluster, and up to 4× on 32 processors of a BlueGene/L. We have also implemented sequential TSQR on a laptop for matrices that do not fit in DRAM, so that slow memory is disk. Our out-of-DRAM implementation was as little as 2× slower than the predicted runtime as though DRAM were infinite.We have also modeled the performance of our parallel CAQR algorithm, yielding predicted speedups over ScaLAPACK's PDGEQRF of up to 9.7× on an IBM Power5, up to 22.9× on a model Petascale machine, and up to 5.3× on a model of the Grid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.