At present, there remains uncertainty surrounding the glacial history of the Fennoscandian Ice Sheet on the Kola Peninsula and Russian Lapland, northwest Arctic Russia. This is attributed to the lack of high-resolution ice sheet-scale geomorphological data in the region. This paper presents 245,997 landforms in a new high-resolution, glacial geomorphological map of the Kola Peninsula and Russian Lapland. Individual landforms were mapped from relief-shaded renditions of the 2 m resolution ArcticDEM alongside 3 m resolution PlanetScope Ortho Scene data in a Geographic Information System (GIS). Digital mapping was accompanied by field mapping in selected areas. The map, which is presented at a scale of 1: 675,000, will form the basis of a palaeoglaciological reconstruction of northwest Arctic Russia that will inform ice sheet dynamicsat both a regional-and ice sheet-scaleand provide an important framework through which numerical ice sheet models can be constrained.
<p>The glacial history of the Kola Peninsula, northwest Arctic Russia, during the Last Glacial-Interglacial Transition (LGIT; c. 18-10 ka) is poorly understood, with some researchers suggesting that the region was glaciated by the Fennoscandian Ice Sheet (FIS; e.g. Hughes et al., 2016), and others suggesting that it was glaciated by an independent Ponoy Ice Cap (e.g. Astakhov et al., 2016). Furthermore, it is unclear if and where there was a periodic ice standstill during the Younger Dryas (c. 12.9-11.7 ka) cold stadial. This is the largest sector of Fennoscandia where glaciation is poorly constrained, which stems from low resolution geomorphological mapping, a lack of sedimentary analyses, and limited dating of glacial landforms and deposits on the Kola Peninsula.</p><p>Initial interpretations of geomorphological mapping and sedimentological analyses are presented. High resolution geomorphological mapping has, so far, demonstrated that the Kola Peninsula was glaciated by the FIS, which flowed from the Scandinavian mountains in the west and across the shield terrain of the Kola Peninsula, and not an independent Ponoy Ice Cap, as indicated by the west-east orientation of glacial lineations (e.g. drumlins, crag and tails, mega-scale glacial lineations), moraines, and meltwater channels. Up to four ice streams located in the western Kola Peninsula and the White Sea demonstrated in the glacial lineation record have also been identified. Furthermore, the Younger Dryas margin is proposed to be aligned north-south across the Kola Peninsula, flowing around the Khibiny Mountains, and forming an ice lobe in the White Sea, which is demonstrated by the moraine and meltwater landform assemblage. Moraines and lateral meltwater channels also suggest the Monche-tundra Mountains were exposed as nunataks, and that there were independent cirque and valley glaciers in the Lovozero and Khibiny Mountains at the periphery of the FIS during the Younger Dryas. In addition, glaciotectonised sediments identified in sedimentary analyses indicates the FIS underwent sustained readvances during retreat. This research will provide crucial empirical data for validating numerical model simulations of the FIS, which in turn will further our understanding of (de)glacial dynamics in other Arctic, Antarctic, and Alpine regions.</p><p>&#160;</p><p>Astakhov, V., Shkatova, V., Zastrozhnov, A. and Chuyko, M. (2016). Glaciomorphological map of the Russian Federation. <em>Quaternary International, 420</em>, pp.4-14.</p><p>Hughes, A.L., Gyllencreutz, R., Lohne, &#216;.S., Mangerud, J. and Svendsen, J.I. (2016). The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. <em>Boreas, 45</em>(1), pp.1-45.</p>
<p>Data-driven reconstructions of palaeo-ice sheets based on their landform records are required for validation and improvement of numerical ice sheet models. In turn, such models can be used to better predict the future responses of the Antarctic and Greenland ice sheets to climate change. We are exploiting the recent expansion in availability and coverage of very-high-resolution (1&#8211;2&#160;m) digital elevation models (DEMs) within the domain of the former Fennoscandian Ice Sheet to reconstruct its flow pattern evolution from the glacial landform record.</p><p>The Fennoscandian Ice Sheet reached its maximum extent at 21&#8211;20&#160;ka. Previous data-driven reconstructions over the whole ice sheet domain (encompassing Fennoscandia, northern continental Europe and western Russia) have necessarily relied upon landform mapping from relatively coarse-resolution (decametre-scale) data, predominantly from satellite images and aerial photographs. However, high-resolution (1&#8211;2&#160;m/pixel resolution) LiDAR DEMs have recently become available over a large portion of the ice sheet domain above contemporary sea level. This reveals previously unobserved assemblages of landforms which record past ice sheet flow, including fine-scale cross-cutting and superposition relationships between landforms. These observations are likely to reveal previously unidentified complexity in the flow evolution of the ice sheet. However, the richness of the data available over such a large area amplifies labour-intensity challenges of data-driven whole-ice-sheet reconstructions; it is not possible to map every flow-related landform (or even a majority of the landforms) manually in a timely manner. We therefore present a new multi-scale sampling approach for systematic and comprehensive ice-sheet-scale mapping, which aims to overcome the data-richness challenge while maintaining rigor and providing informative data products for model-data comparisons.</p><p>We present in-progress mapping products covering Finland, Norway and Sweden produced using our new multi-scale sampling approach. The products include mapping of >200 000 subglacial bedforms and bedform fields, and a summary map of &#8216;landform linkages&#8217;. Landform linkages summarise the detailed landform mapping but do not extrapolate over large distances between observed landforms. Thus, they provide a reduced data product that is useful for regional-scale flow reconstruction and model-data comparisons and remains closely tied to landform observations. The landform linkages will be reduced further into longer interpretative flowlines, which we will then use to generate &#8216;flowsets&#8217; describing discrete ice flow patterns within the ice sheet. We will use cross-cutting relationships observed in the detailed landform mapping to ascribe a relative chronology to overlapping flowsets where relevant. We will then combine the flowsets into a new reconstruction of the flow pattern evolution of the ice sheet.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.