The aim of the present study was to examine the effects of sodium bicarbonate (NaHCO(3)) administration on lower-body, hypertrophy-type resistance exercise (HRE). Using a double-blind randomized counterbalanced design, 12 resistance-trained male participants (mean ± SD; age = 20.3 ± 2 years, mass = 88.3 ± 13.2 kg, height = 1.80 ± 0.07 m) ingested 0.3 g kg(-1) of NaHCO(3) or placebo 60 min before initiation of an HRE regimen. The protocol employed multiple exercises: squat, leg press, and knee extension, utilizing four sets each, with 10-12 repetition-maximum loads and short rest periods between sets. Exercise performance was determined by total repetitions generated during each exercise, total accumulated repetitions, and a performance test involving a fifth set of knee extensions to failure. Arterialized capillary blood was collected via fingertip puncture at four time points and analyzed for pH, [HCO(3)(-)], base excess (BE), and lactate [Lac(-)]. NaHCO(3) supplementation induced a significant alkaline state (pH: NaHCO(3): 7.49 ± 0.02, placebo: 7.42 ± 0.02, P < 0.05; [HCO(3)(-)]: NaHCO(3): 31.50 ± 2.59, placebo: 25.38 ± 1.78 mEq L(-1), P < 0.05; BE: NaHCO(3): 7.92 ± 2.57, placebo: 1.08 ± 2.11 mEq L(-1), P < 0.05). NaHCO(3) administration resulted in significantly more total repetitions than placebo (NaHCO(3): 139.8 ± 13.2, placebo: 134.4 ± 13.5), as well as significantly greater blood [Lac(-)] after the exercise protocol (NaHCO(3): 17.92 ± 2.08, placebo: 15.55 ± 2.50 mM, P < 0.05). These findings demonstrate ergogenic efficacy for NaHCO(3) during HRE and warrant further investigation into chronic training applications.
These results suggest that a relationship may exist between 5-HT transport in platelets and cortical synaptosomes, when appropriate controls for confounding factors are employed.
Manufacturing of nanoscale materials (nanomaterials) is a major outcome of nanotechnology. However, the potential adverse human health effects of manufactured nanomaterial exposure are not yet fully understood, and exposures in humans are mostly uncharacterized. Appropriate exposure control strategies to protect workers are still being developed and evaluated, and regulatory approaches rely largely on industry self-regulation and self-reporting. In this context of soft regulation, the authors sought to: 1) assess current company-reported environmental health and safety practices in the United States throughout the product life cycle, 2) consider their implications for the manufactured nanomaterial workforce, and 3) identify the needs of manufactured nanomaterial companies in developing nano-protective environmental health and safety practices. Analysis was based on the responses of 45 U.S.-based company participants in a 2009-2010 international survey of private companies that use and/or produce nanomaterials. Companies reported practices that span all aspects of the current government-recommended hierarchical approach to manufactured nanomaterials' exposure controls. However, practices that were tailored to current manufactured nanomaterials' hazard and exposure knowledge, whether within or outside the hierarchical approach, were reported less frequently than general chemical hygiene practices. Product stewardship and waste management practices-the influences of which are substantially downstream-were reported less frequently than most other environmental health and safety practices. Larger companies had more workers handling nanomaterials, but smaller companies had proportionally more employees handling nanomaterials and more frequently identified impediments to implementing nano-protective practices. Company-reported environmental health and safety practices suggest more attention to environmental health and safety is necessary, especially with regard to practices that can cause external effects. Given reported impediments, smaller companies may especially benefit from more attention. However, the manufactured nanomaterial workforce within smaller companies is particularly difficult to identify and hence locate, posing challenges to developing and enforcing appropriate workplace environmental health and safety. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a file containing Survey of Current Health and Safety Practices in the Nanomaterial Industry and a file containing figures.].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.