The TMPRSS2–ERG gene fusion and subsequent overexpression of the ERG transcription factor occurs in ∼50% of prostate tumors, making it the most common abnormality of the prostate cancer genome. While ERG has been shown to drive tumor progression and cancer-related phenotypes, as a transcription factor it is difficult to target therapeutically. Using a genetic screen, we identified the toll-like receptor 4 (TLR4) signaling pathway as important for ERG function in prostate cells. Our data confirm previous reports that ERG can transcriptionally activate TLR4 gene expression; however, using a constitutively active ERG mutant, we demonstrate that the critical function of TLR4 signaling is upstream, promoting ERG phosphorylation at serine 96 and ERG transcriptional activation. The TLR4 inhibitor, TAK-242, attenuated ERG-mediated migration, clonogenic survival, target gene activation and tumor growth. Together these data indicate a mechanistic basis for inhibition of TLR4 signaling as a treatment for ERG-positive prostate cancer.
Ewing sarcoma breakpoint region 1 (EWSR1) encodes a multifunctional protein that can cooperate with the transcription factor ERG to promote prostate cancer. The EWSR1 gene is also commonly involved in oncogenic gene rearrangements in Ewing sarcoma. Despite the cancer relevance of EWSR1, its regulation is poorly understood. Here we find that in prostate cancer, androgen signaling upregulates a 5′ EWSR1 isoform by promoting usage of an intronic polyadenylation site. This isoform encodes a cytoplasmic protein that can strongly promote cell migration and clonogenic growth. Deletion of an Androgen Receptor (AR) binding site near the 5′ EWSR1 polyadenylation site abolished androgen-dependent upregulation. This polyadenylation site is also near the Ewing sarcoma breakpoint hotspot, and androgen signaling promoted R-loop and breakpoint formation. RNase H overexpression reduced breakage and 5′ EWSR1 isoform expression suggesting an R-loop dependent mechanism. These data suggest that androgen signaling can promote R-loops internal to the EWSR1 gene leading to either early transcription termination, or breakpoint formation.
Aberrant expression of the transcription factor ERG is a key driving event in approximately one-half of all of prostate cancers. Lacking an enzymatic pocket and mainly disordered, the structure of ERG is difficult to exploit for therapeutic design. We recently identified EWS as a specific interacting partner of ERG that is required for oncogenic function. In this study, we aimed to target this specific protein-protein interaction with small molecules. A high-throughput screening (HTS) strategy was implemented to identify potential protein-protein interaction inhibitors. Secondary assays verified the function of several hit compounds, and one lead compound inhibited ERG-mediated phenotypes in prostate cells. This is the first study aimed at targeting the ERG-EWS protein-protein interaction for the development of a small molecule-based prostate cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.