Active biocompatible systems are of great current interest for their possible applications in drug or antidote delivery at specific locations. Herein, we report the synthesis and study of self-propelled microparticles powered by enzymatic reactions and their directed movement in substrate concentration gradient. Polystyrene microparticles were functionalized with the enzymes urease and catalase using a biotin-streptavidin linkage procedure. The motion of the enzyme-coated particles was studied in the presence of the respective substrates, using optical microscopy and dynamic light scattering analysis. The diffusion of the particles was found to increase in a substrate concentration dependent manner. The directed chemotactic movement of these enzyme-powered motors up the substrate gradient was studied using three-inlet microfluidic channel architecture.
The field of active matter holds promise for applications in particle assembly,c argo and drug delivery, and sensing. In pursuit of these capabilities,r esearchers have produced as uite of nanomotors,f luid pumps,a nd particle assembly strategies.A lthough promising,t here are many challenges,e specially for mechanisms that rely on chemical propulsion. One way to circumvent these issues is by the use of external energy sources.Herein, we propose amethod of using freely suspended nanoparticles to generate fluid pumping towards desired point sources.T he pumping rates are dependent on particle concentration and light intensity,m aking it highly controllable.U sing these directed flows,w ef urther demonstrate the ability to reversibly construct and move colloidal crystals.
Using computational modeling, we design a facile method for sorting particles of different sizes in a fluid-filled microchamber. The microchamber is inclined at an angle with respect to the horizontal direction and contains suspended gold nanoparticles as well as the microparticles. With the application of ultraviolet light, the heat generated by illuminating the gold nanoparticles gives rise to thermal buoyancy effects, which drive the flow of the fluid in the chamber. This thermally driven, convective flow can be tailored by varying the intensity of the imposed light and the concentration of the gold nanoparticles in the solution. The competition between the drag force imposed by the fluid flows and the gravitational forces acting on the different sized particles produces the separation of the particles along the chamber’s bottom, inclined wall. The separation distance between the particles can be increased by increasing the angle of inclination and the relative difference in the particle sizes. This system provides a label-free, membrane-less, and low-cost approach for sorting particles vital to a wide range of applications.
To fully realize the potential of microfluidic platforms as useful diagnostic tools, the devices must be sufficiently portable that they function at the point-of-care, as well as remote and resource-poor locations. Using both modeling and experiments, here we develop a standalone fluidic device that is driven by light and operates without the need for external electrical or mechanical pumps. The light initiates a photochemical reaction in the solution; the release of chemical energy from the reaction is transduced into the spontaneous motion of the surrounding fluid. The generated flow is driven by two simultaneously occurring mechanisms: solutal buoyancy that controls the motion of the bulk fluid and diffusioosmosis that regulates motion near the bottom of the chamber. Consequently, the bulk and surface fluid flows can be directed independently of one another. We demonstrate that this exceptional degree of spatiotemporal control provides a new method for autonomously transporting different-sized particles in opposite directions within the chamber. Thus, one device can be used to both separate the particles and drive them to different locations for further processing or analysis. This property is particularly useful for analyzing fluids that contain multiple contaminants or disease agents. Because this system relies on intrinsic hydrodynamic interactions initiated by a portable, small-scale source of light, the device provides the desired level of mobility vital for the next generation of functional fluidic platforms.
The field of active matter holds promise for applications in particle assembly, cargo and drug delivery, and sensing. In pursuit of these capabilities, researchers have produced a suite of nanomotors, fluid pumps, and particle assembly strategies. Although promising, there are many challenges, especially for mechanisms that rely on chemical propulsion. One way to circumvent these issues is by the use of external energy sources. Herein, we propose a method of using freely suspended nanoparticles to generate fluid pumping towards desired point sources. The pumping rates are dependent on particle concentration and light intensity, making it highly controllable. Using these directed flows, we further demonstrate the ability to reversibly construct and move colloidal crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.