In this work, the least squares weighted residual method (LSWRM) was used to solve the generalised elastic column buckling problem for the case of pinned ends. Mathematically, the problem solved was a boundary value problem (BVP) represented by a system of three coupled linear ordinary differential equations (ODEs) in terms of three unknown displacement functions and subject to boundary conditions. The least squares residual method used formulated the problem as a variational problem, and reduced it to an algebraic eigenvalue problem which was solved to obtain the characteristic buckling equation. The characteristic stability equation was found to be a cubic polynomial for the general asymmetric sectioned column. The buckling modes were found as coupled flexuraltorsional buckling modes. Two special cases of the problem were studied namely: doubly symmetric and singly symmetric sections. For doubly symmetric sections, the buckling loads and the buckling mode were found to be decoupled and the buckling mode could be flexural or flexural-torsional. For singly symmetric section columns, one of the bucking modes becomes decoupled while the others are coupled. The buckling equation showed the column could fail by either pure flexure or coupled flexural-torsional buckling mode. The results of the present work agree with Timoshenko's results, and other results from the technical literature.
In this study, the Ritz variational method was used to analyze and solve the bending problem of simply supported rectangular Kirchhoff plate subject to transverse hydrostatic load distribution over the entire plate domain. The deflection function was chosen based on double series of infinite terms as coordinate function that satisfy the geometric and force boundary conditions and unknown generalized displacement parameters. Upon substitution into the total potential energy functional for homogeneous, isotropic Kirchhoff plates, and evaluation of the integrals, the total potential energy functional was obtained in terms of the unknown generalized displacement parameters. The principle of minimization of the total potential energy was then applied to determine the unknown displacement parameters. Moment curvature relations were used to find the bending moments. It was found that the deflection functions and the bending moment functions obtained for the plate domain, and the values at the plate center were exactly identical as the solutions obtained by Timoshenko and Woinowsky-Krieger using the Navier series method.
In this paper, an analytical three-dimensional (3D) bending characteristic of an isotropic rectangular thick plate with all edges simply supported (SSSS) and carrying uniformly distributed transverse load using the energy technique is presented. The three-dimensional constitutive relations which involves six stress components were used in the established, refined shear deformation theory to obtain a total potential energy functional. This theory obviates application of the shear correction factors for the solution to the problem. The governing equation of a thick plate was obtained by minimizing the total potential energy functional with respect to the out of plane displacement. The deflection functions which are in form of trigonometric were obtained as the solution of the governing equation. These deflection functions which are the product of the coefficient of deflection and shape function of the plate were substituted back into the energy functional, thereafter a realistic formula for calculating the deflection and stresses were obtained through minimizations with respect to the rotations and deflection coefficients. The values of the deflections and stresses obtained herein were tabulated and compared with those of previous 3D plate theory, refined plate theories and, classical plate theory (CPT) accordingly. It was observed that the result obtained herein varied more with those of CPT and RPT by 25.39% and 21.09% for all span-to-thickness ratios respectively. Meanwhile, the recorded percentage differences are as close as 7.17% for all span-to-thickness ratios, when compared with three dimensional plate analysis. This showed that exact 3D plate theory is more reliable than the shear deformation theory which are quite coarse for thick plate analysis. Doi: 10.28991/esj-2021-01320 Full Text: PDF
This work studies the dynamic characteristics of simply supported rectangular thin plates undergoing natural transverse vibrations in harmonic motion. The governing partial differential equation for the free transverse vibration of the plate was solved by the Galerkin-Vlasov variational technique. The assumption of free harmonic motions reduced the governing equation to an algebraic eigen value eigenvector problem, which was solved in the space domain to obtain the eigen frequencies and modal shape functions of the vibrating Kirchhoff plate. The eigen frequencies and modal shape functions obtained were found to be identical with the results obtained by the classical methods of Navier and Levy for the same problem.
In this paper, direct variational calculus was put into practical use to analyses the three dimensional (3D) stability of rectangular thick plate which was simply supported at all the four edges (SSSS) under uniformly distributed compressive load. In the analysis, both trigonometric and polynomial displacement functions were used. This was done by formulating the equation of total potential energy for a thick plate using the 3D constitutive relations, from then on, the equation of compatibility was obtained to determine the relationship between the rotations and deflection. In the same way, governing equation was obtained through minimization of the total potential energy functional with respect to deflection. The solution of the governing equation is the function for deflection. Functions for rotations were obtained from deflection function using the solution of compatibility equations. These functions, deflection and rotations were substituted back into the energy functional, from where, through minimizations with respect to displacement coefficients, formulas for analysis were obtained. In the result, the critical buckling loads from the present study are higher than those of refined plate theories with 7.70%, signifying the coarseness of the refined plate theories. This amount of difference cannot be overlooked. However, it is shown that, all the recorded average percentage differences between trigonometric and polynomial approaches used in this work and those of 3D exact elasticity theory is lower than 1.0%, confirming the exactness of the present theory. Thus, the exact 3D plate theory obtained, provides a good solution for the stability analysis of plate and, can be recommended for analysis of any type of rectangular plates under the same loading and boundary condition. Doi: 10.28991/CEJ-2022-08-01-05 Full Text: PDF
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.