We introduce a natural temporal analogue of Eulerian circuits and prove that, in contrast with the static case, it is NP-hard to determine whether a given temporal graph is temporally Eulerian even if strong restrictions are placed on the structure of the underlying graph and each edge is active at only three times. However, we do obtain an FPT-algorithm with respect to a new parameter called intervalmembership-width which restricts the times assigned to different edges; we believe that this parameter will be of independent interest for other temporal graph problems. Our techniques also allow us to resolve two open questions of Akrida, Mertzios and Spirakis [CIAC 2019] concerning a related problem of exploring temporal stars.
We introduce a natural temporal analogue of Eulerian circuits and prove that, in contrast to the static case, it is $${\textsc {NP}}$$
NP
-hard to determine whether a given temporal graph is temporally Eulerian even if strong restrictions are placed on the structure of the underlying graph and each edge is active at only three times. However, we do obtain an $${\textsc {FPT}}$$
FPT
-algorithm with respect to a new parameter called interval-membership-width which restricts the times assigned to different edges; we believe that this parameter will be of independent interest for other temporal graph problems. Our techniques also allow us to resolve two open questions of Akrida, Mertzios and Spirakis [CIAC 2019] concerning a related problem of exploring temporal stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.