Seabed sediment composition is an important component of benthic habitat and there are many approaches for producing maps that convey sediment information to marine managers. Random Forest is a popular statistical method for thematic seabed sediment mapping using both categorical and quantitative supervised modelling approaches. This study compares the performance and qualities of these Random Forest approaches to predict the distribution of fine-grained sediments from grab samples as one component of a multi-model map of sediment classes in Frobisher Bay, Nunavut, Canada. The second component predicts the presence of coarse substrates from underwater video. Spatial and non-spatial cross-validations were conducted to evaluate the performance of categorical and quantitative Random Forest models and maps were compared to determine differences in predictions. While both approaches seemed highly accurate, the non-spatial cross-validation suggested greater accuracy using the categorical approach. Using a spatial cross-validation, there was little difference between approaches—both showed poor extrapolative performance. Spatial cross-validation methods also suggested evidence of overfitting in the coarse sediment model caused by the spatial dependence of transect samples. The quantitative modelling approach was able to predict rare and unsampled sediment classes but the flexibility of probabilistic predictions from the categorical approach allowed for tuning to maximize extrapolative performance. Results demonstrate that the apparent accuracies of these models failed to convey important differences between map predictions and that spatially explicit evaluation strategies may be necessary for evaluating extrapolative performance. Differentiating extrapolative from interpolative prediction can aid in selecting appropriate modelling methods.
Benthic habitat maps, including maps of seabed sediments, have become critical spatial-decision support tools for marine ecological management and conservation. Despite the increasing recognition that environmental variables should be considered at multiple spatial scales, variables used in habitat mapping are often implemented at a single scale. The objective of this study was to evaluate the potential for using environmental variables at multiple scales for modelling and mapping seabed sediments. Sixteen environmental variables were derived from multibeam echosounder data collected near Qikiqtarjuaq, Nunavut, Canada at eight spatial scales ranging from 5 to 275 m, and were tested as predictor variables for modelling seabed sediment distributions. Using grain size data obtained from grab samples, we tested which scales of each predictor variable contributed most to sediment models. Results showed that the default scale was often not the best. Out of 129 potential scale-dependent variables, 11 were selected to model the additive log-ratio of mud and sand at five different scales, and 15 were selected to model the additive log-ratio of gravel and sand, also at five different scales. Boosted Regression Tree models that explained between 46.4 and 56.3% of statistical deviance produced multiscale predictions of mud, sand, and gravel that were correlated with cross-validated test data (Spearman’s ρmud = 0.77, ρsand = 0.71, ρgravel = 0.58). Predictions of individual size fractions were classified to produce a map of seabed sediments that is useful for marine spatial planning. Based on the scale-dependence of variables in this study, we concluded that spatial scale consideration is at least as important as variable selection in seabed mapping.
The scale dependence of benthic terrain attributes is wellaccepted, and multi-scale methods are increasingly applied for benthic habitat mapping. There are, however, multiple ways to calculate terrain attributes at multiple scales, and the suitability of these approaches depends on the purpose of the analysis and data characteristics. There are currently few guidelines establishing the appropriateness of multi-scale raster calculation approaches for specific benthic habitat mapping applications. First, we identify three common purposes for calculating terrain attributes at multiple scales for benthic habitat mapping: (i) characterizing scale-specific terrain features, (ii) reducing data artefacts and errors, and (iii) reducing the mischaracterization of ground-truth data due to inaccurate sample positioning. We then define criteria that calculation approaches should fulfill to address these purposes. At two study sites, five raster terrain attributes, including measures of orientation, relative position, terrain variability, slope, and rugosity were calculated at multiple scales using four approaches to compare the suitability of the approaches for these three purposes. Results suggested that specific calculation approaches were better suited to certain tasks. A transferable parameter, termed the 'analysis distance', was necessary to compare attributes calculated using different approaches, and we emphasize the utility of such a parameter for facilitating the generalized comparison of terrain attributes across methods, sites, and scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.