Lipopolysaccharide (LPS) is one of the main virulence factors of gram-negative bacteria. The LPS fromCampylobacter spp. has endotoxic properties and has been shown to play a role in adhesion. We previously cloned a gene cluster (wla) which is involved in the synthesis of the Campylobacter jejuni 81116 LPS molecule. Sequence alignment of the first gene in this cluster indicated similarity with galE genes. These genes encode a UDP-glucose 4-epimerase, which catalyzes the interconversion of UDP-galactose and UDP-glucose. A Salmonella galE mutant was transformed with the galE gene from C. jejuni. The LPS analysis of wild-type, galE, and complemented galE Salmonella strains showed that the C. jejuni galE gene could restore the smooth wild-type Salmonella LPS. A UDP-glucose 4-epimerase assay was used to demonstrate that the galE gene from C. jejuni encoded this epimerase. We constructed a C. jejuni galE mutant which expressed a lipid A-core molecule of reduced molecular weight that did not react with antiserum raised against the parental strain. These results show an essential role for the galE gene in the synthesis of C. jejuni LPS. The galE mutant also showed a reduction in its ability to adhere to and invade INT407 cells. However, it was still able to colonize chickens to the same level as the wild-type strain. The serum resistance and hemolytic activity of this mutant were not changed compared to the parent strain. The ability of the mutant to take up DNA and integrate it in its genome was reduced 20-fold. These results show that LPS of C. jejuni is an important virulence factor.
Campylobacter jejuni is a common cause of bacterial enteritis. The surface capsular polysaccharides are important for this bacterium to survive in the environment, but little is known about their involvement in bacterium-host interactions. This study showed that the C. jejuni capsular polysaccharides play an important role in adherence to and invasion of human embryonic epithelial cells. However, no significant role of capsular polysaccharides was shown in colonization of the chicken gut.
A membrane-bound, haemolytic phospholipase A 2 (PLA 2 ) activity was detected in clinical strains of Campylobacter concisus isolated from children with gastroenteritis. The clinical strains were assigned into two molecular groups (genomospecies) based on PCR amplification of their 23S rDNA. This calcium-dependent, heat-stable, haemolytic PLA 2 activity was detected in strains from both genomospecies. A crude haemolysin extract (CHE) was initially prepared from cellular outermembrane proteins of these isolates and was further fractionated by ultrafiltration. The haemolytic activity of the extracted fraction (R30) was retained by ultrafiltration using a 30 kDa molecular mass cut-off filter, and was designated haemolysin extract (HE). Both CHE and HE had PLA 2 activity and caused stable vacuolating and cytolytic effects on Chinese hamster ovary cells in tissue culture. Primers for the conserved region of pldA gene (phospholipase A gene) from Campylobacter coli amplified a gene region of 460 bp in all tested isolates, confirming the presence of a homologous PLA gene sequence in C. concisus. The detection of haemolytic PLA 2 activity in C. concisus indicates the presence of a potential virulence factor in this species and supports the hypothesis that C. concisus is a possible opportunistic pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.