Fibroepithelial lesions (FELs) are a heterogeneous group of tumours comprising fibroadenomas (FAs) and phyllodes tumours (PTs). Here we used a 16-gene panel that was previously discovered to be implicated in pathogenesis and progression, to characterise a large international cohort of FELs via targeted sequencing. The study comprised 303 (38%) FAs and 493 (62%) PTs which were contributed by the International Fibroepithelial Consortium. There were 659 (83%) Asian and 109 (14%) non-Asian FELs, while the ethnicity of the rest was unknown. Genetic aberrations were significantly associated with increasing grade of PTs, and were detected more in PTs than FAs for MED12, TERT promoter, RARA, FLNA, SETD2, TP53, RB1, EGFR, and IGF1R. Most borderline and malignant PTs possessed ≥ 2 mutations, while there were more cases of FAs with ≤ 1 mutation compared to PTs. FELs with MED12 mutations had significantly higher rates of TERT promoter, RARA, SETD2, EGFR, ERBB4, MAP3K1, and IGF1R aberrations. However, FELs with wild-type MED12 were more likely to express TP53 and PIK3CA mutations. There were no significant differences observed between the mutational profiles of recurrent FAs, FAs with a history of subsequent ipsilateral recurrence or contralateral occurrence, and FAs without a history of subsequent events. We identified recurrent mutations which were more frequent in PTs than FAs, with borderline and malignant PTs harbouring cancer driver gene and multiple mutations. This study affirms the role of a set of genes in FELs, including its potential utility in classification based on mutational profiles.Conflict of interest statement: PHT, BTT, and PT jointly hold patent applications for PCT/SG2015/050107 (Breast fibroadenoma susceptibility mutations and use thereof) and PCT/SG2015/050368 (Method and kit for pathologic grading of breast neoplasms). The other authors declare no competing interests.
Fibroadenomas of the breast are benign fibroepithelial tumours most frequently encountered in women of reproductive age, although they may be diagnosed at any age. The fibroadenoma comprises a proliferation of both stromal and epithelial components. The mechanisms underlying fibroadenoma pathogenesis remain incompletely understood. In the clinical setting, distinguishing cellular fibroadenomas from benign phyllodes tumours is a common diagnostic challenge due to subjective histopathological criteria and interobserver differences. Recent sequencing studies have demonstrated the presence of highly recurrent mutations in fibroadenomas, and also delineated the genomic landscapes of fibroadenomas and the closely related phyllodes tumours, revealing differences at the gene level, which may be of potential adjunctive diagnostic use. The present article provides an overview of key studies uncovering genetic and genomic abnormalities in fibroadenomas, from initial karyotype reports revealing myriad cytogenetic aberrations to next-generation sequencing-based approaches that led to the discovery of highly recurrent mutations. A thorough understanding of these abnormalities is important to further elucidate the mechanisms by which fibroadenomas arise and to refine diagnostic assessment of this very common tumour.
While paediatric fibroepithelial lesions can have cellular stroma potentially raising concern for phyllodes tumour, their lack of TERT promoter and cancer driver mutations is reassuring. The absence of mutations in a significant proportion of tumours, especially the giant fibroadenomas, warrants investigation of pathogenetic mechanisms beyond those involving the 50 genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.