Highlights d Ctenophore neurons and sensory cells bear multiple unique neuropeptides d Several neuropeptides affect ctenophore swimming behavior d Peptidergic ctenophore neurons have long anastomosed neurites d Ctenophore neurons have both common and unique molecular and morphological features
Xenopus laevis is one of the most widely used model organism in neurobiology. It is therefore surprising, that no detailed and complete description of the cranial nerves exists for this species. Using classical histological sectioning in combination with fluorescent whole mount antibody staining and micro-computed tomography we prepared a detailed innervation map and a freely-rotatable three-dimensional (3D) model of the cranial nerves and anterior-most spinal nerves of early X. laevis tadpoles. Our results confirm earlier descriptions of the pre-otic cranial nerves and present the first detailed description of the post-otic cranial nerves. Tracing the innervation, we found two previously undescribed head muscles (the processo-articularis and diaphragmatico-branchialis muscles) in X. laevis. Data on the cranial nerve morphology of tadpoles are scarce, and only one other species (Discoglossus pictus) has been described in great detail. A comparison of Xenopus and Discoglossus reveals a relatively conserved pattern of the post-otic and a more variable morphology of the pre-otic cranial nerves. Furthermore, the innervation map and the 3D models presented here can serve as an easily accessible basis to identify alterations of the innervation produced by experimental studies such as genetic gain- and loss of function experiments.
A fundamental breakthrough in neurobiology has been the formulation of the neuron doctrine by Santiago Ramón y Cajal, which stated that the nervous system is composed of discrete cells. Electron microscopy later confirmed the doctrine and allowed the identification of synaptic connections. In this work, we used volume electron microscopy and three-dimensional reconstructions to characterize the nerve net of a ctenophore, a marine invertebrate that belongs to one of the earliest-branching animal lineages. We found that neurons in the subepithelial nerve net have a continuous plasma membrane that forms a syncytium. Our findings suggest fundamental differences of nerve net architectures between ctenophores and cnidarians or bilaterians and offer an alternative perspective on neural network organization and neurotransmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.