Molecular immunologic determinants of disease severity during Plasmodium falciparum malaria are largely undetermined. Our recent investigations showed that peripheral blood mononuclear cell (PBMC) cyclooxygenase-2 (COX-2) gene expression and plasma prostaglandin E(2) (PGE(2)) production are suppressed in children with falciparum malaria relative to healthy, malaria-exposed children with partial immunity. Furthermore, decreased COX-2/PGE(2) levels were significantly associated with increased plasma interleukin-10 (IL-10), an anti-inflammatory cytokine that inhibits the expression of COX-2 gene products. To determine the mechanism(s) responsible for COX-2-derived PGE(2) suppression, PBMCs were cultured from children with falciparum malaria. PGE(2) production was suppressed under baseline and COX-2-promoting conditions (stimulation with lipopolysaccharide [LPS] and interferon [IFN]-gamma) over prolonged periods, suggesting that an in vivo-derived product(s) was responsible for reduced PGE(2) biosynthesis. Ingestion of hemozoin (malarial pigment) by PBMC was investigated as a source of COX-2/PGE(2) suppression in PBMCs from healthy, malaria-naive adults. In addition, synthetically prepared hemozoin, beta-hematin, was used to investigate the effects of the core iron component of hemozoin, ferriprotoporphyrin-IX (FPIX). Physiologic concentrations of hemozoin or b-hematin suppressed LPS- and IFN-gamma-induced COX-2 mRNA in a time- and dose-dependent manner, resulting in decreased COX-2 protein and PGE(2) production. Suppression of COX-2/PGE(2) by hemozoin was not due to decreased cell viability as evidenced by examination of mitochondrial bioactivity. These data illustrate that ingestion of FPIX by blood mononuclear cells is responsible for suppression of COX-2/PGE(2). Although hemozoin induced overproduction of IL-10, neutralizing IL-10 antibodies failed to restore PGE(2) production. Thus, acquisition of hemozoin by blood mononuclear cells is responsible for suppression of PGE(2) in malaria through inhibition of de novo COX-2 transcripts via molecular mechanisms independent of increased IL-10 production.
Previously, we established a model in which physiologically adequate function of the autologous b cells was recovered in non-obese diabetic (NOD) mice after the onset of hyperglycemia by rendering them hemopoietic chimera. These mice were termed antea-diabetic. In the current study, we addressed the role of T regulatory (Treg) cells in the mechanisms mediating the restoration of euglycemia in the antea-diabetic NOD model. The data generated in this study demonstrated that the numbers of Treg cells were decreased in unmanipulated NOD mice, with the most profound deficiency detected in the pancreatic lymph nodes (PLNs). The impaired retention of the Treg cells in the PLNs correlated with the locally compromised profile of the chemokines involved in their trafficking, with the most prominent decrease observed in SDF-1. The amelioration of autoimmunity and restoration of euglycemia observed in the antea-diabetic mice was associated with restoration of the Treg cell population in the PLNs. These data indicate that the function of the SDF-1/CXCR4 axis and the retention of Treg cells in the PLNs have a potential role in diabetogenesis and in the amelioration of autoimmunity and b cell regeneration in the antea-diabetic model. We have demonstrated in the antea-diabetic mouse model that lifelong recovery of the b cells has a strong correlation with normalization of the Treg cell population in the PLNs. This finding offers new opportunities for testing the immunomodulatory regimens that promote accumulation of Treg cells in the PLNs as a therapeutic approach for type 1 diabetes (T1D).
Background The goal of this study was to assess the ability of machine artificial intelligence (AI) to quantitatively assess lung ultrasound (LUS) B-line presence using images obtained by learners novice to LUS in patients with acute heart failure (AHF), compared to expert interpretation. Methods This was a prospective, multicenter observational study conducted at two urban academic institutions. Learners novice to LUS completed a 30-min training session on lung image acquisition which included lecture and hands-on patient scanning. Learners independently acquired images on patients with suspected AHF. Automatic B-line quantification was obtained offline after completion of the study. Machine AI counted the maximum number of B-lines visualized during a clip. The criterion standard for B-line counts was semi-quantitative analysis by a blinded point-of-care LUS expert reviewer. Image quality was blindly determined by an expert reviewer. A second expert reviewer blindly determined B-line counts and image quality. Intraclass correlation was used to determine agreement between machine AI and expert, and expert to expert. Results Fifty-one novice learners completed 87 scans on 29 patients. We analyzed data from 611 lung zones. The overall intraclass correlation for agreement between novice learner images post-processed with AI technology and expert review was 0.56 (confidence interval [CI] 0.51–0.62), and 0.82 (CI 0.73–0.91) between experts. Median image quality was 4 (on a 5-point scale), and correlation between experts for quality assessment was 0.65 (CI 0.48–0.82). Conclusion After a short training session, novice learners were able to obtain high-quality images. When the AI deep learning algorithm was applied to those images, it quantified B-lines with moderate-to-fair correlation as compared to semi-quantitative analysis by expert review. This data shows promise, but further development is needed before widespread clinical use.
Background Lung ultrasound (LUS) is helpful for the evaluation of patients with dyspnea in the emergency department (ED). However, it remains unclear how much training and how many LUS examinations are needed for ED physicians to obtain proficiency. The objective of this study was to determine the threshold number of LUS physicians need to perform to achieve proficiency for interpreting LUS on ED patients with dyspnea. Methods A prospective study was performed at Patan Hospital in Nepal, evaluating proficiency of physicians novice to LUS. After eight hours of didactics and hands-on training, physicians independently performed and interpreted ultrasounds on patients presenting to the ED with dyspnea. An expert sonographer blinded to patient data and LUS interpretation reviewed images and provided an expert interpretation. Interobserver agreement was performed between the study physician and expert physician interpretation. Cumulative sum analysis was used to determine the number of scans required to attain an acceptable level of training. Results Nineteen physicians were included in the study, submitting 330 LUS examinations with 3288 lung zones. Eighteen physicians (95%) reached proficiency. Physicians reached proficiency for interpreting LUS accurately when compared to an expert after 4.4 (SD 2.2) LUS studies for individual zone interpretation and 4.8 (SD 2.3) studies for overall interpretation, respectively. Conclusions Following 1 day of training, the majority of physicians novice to LUS achieved proficiency with interpretation of lung ultrasound after less than five ultrasound examinations performed independently.
Objective: As point-of-care ultrasound (POCUS) continues to evolve, a national standardized curriculum for training and credentialing pediatric emergency medicine (PEM) physicians is still lacking. The goal of this study was to assess PEM faculty in performing and interpreting POCUS during implementation of a training curriculum.Methods: Sixteen full-time PEM faculty with either limited or no prior POCUS experience were trained to perform 4 ultrasound studies. Twelve of the 16 completed the training with a goal of credentialing within 12 months of implementation. For each faculty, we assessed competency by comparing precurriculum and postcurriculum test assessments and by evaluating quality of POCUS acquisition and accuracy of interpretation. We also monitored the amount of continuing medical education (CME) hours completed to ensure a minimum didactic component. Results:We found a significant improvement in POCUS competency comparing precurriculum to postcurriculum test assessments (55.4% vs 75.6%, P < 0.0002). One thousand two hundred seventy images were submitted over the course of the curriculum. Accuracy, sensitivity, and specificity were 98.23% (confidence interval [CI] = 97.18-98.97), 97.01% (CI = 92.53-99.81), and 98.43% (CI = 97.33-99.81), respectively. Faculty self-rating of image quality was significantly higher than expert reviewer rating of image quality (3.4 ± 0.86 vs 3.2 ± 0.56, P < 0.0001). We found no change in expert reviewer rating of image quality over time. Faculty completed a combined 232.5 CME hours (average, 17.4 ± 10.8), with the majority of hours coming from an institutional POCUS CME workshop.Conclusions: These results show that a structured curriculum can improve PEM faculty POCUS competency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.