We report on the fabrication and characterisation of graphene field-effect transistor (GFET) biosensors for the detection of Clusterin, a prominent protein biomarker of Alzheimer’s disease (AD). The GFET sensors were fabricated on Si/SiO2 substrate using photolithographic patterning and metal lift-off techniques with evaporated chromium and sputtered gold contacts. Raman Spectroscopy was performed on the devices to determine the quality of the graphene. The GFETs were annealed to improve their performance before the channels were functionalized by immobilising the graphene surface with linker molecules and anti-Clusterin antibodies. Concentration of linker molecules was also independently verified by absorption spectroscopy using the highly collimated micro-beam light of Diamond B23 beamline. The detection was achieved through the binding reaction between the antibody and varying concentrations of Clusterin antigen from 1 to 100 pg/mL, as well as specificity tests using human chorionic gonadotropin (hCG), a glycoprotein risk biomarker of certain cancers. The GFETs were characterized using direct current (DC) 4-probe electrical resistance (4-PER) measurements, which demonstrated a limit of detection of the biosensors to be ∼ 300 fg/mL (4 fM). Comparison with back-gated Dirac voltage shifts with varying concentration of Clusterin show 4-PER measurements to be more accurate, at present, and point to a requirement for further optimisation of the fabrication processes for our next generation of GFET sensors. Thus, we have successfully fabricated a promising set of GFET biosensors for the detection of Clusterin protein biomarker. The developed GFET biosensors are entirely generic and also have the potential to be applied to a variety of other disease detection applications such as Parkinson’s, cancer, and cardiovascular.
We report on the fabrication and characterisation of Graphene field-effect transistor (GFET) Biosensors for detecting clusterin, a prominent protein biomarker of Alzheimer’s disease (AD). There are approximately 54 million people currently living with dementia worldwide and this is expected to rise to 130 million by 2050. Although there are over 400 different types of dementia, AD is the most common type, affecting between 50–75% of those diagnosed with dementia. Diagnosis of AD can take up to 2 years currently using MRI, PET, CT scans and memory tests. There is, therefore, an urgent need to develop low-cost, accurate, non-invasive and point-of-care (PoC) sensors for early diagnosis of AD. The GFET sensors we are developing to address this challenge were fabricated on Si/SiO2 substrate through processes of photolithographic patterning and metal lift-off techniques with evaporated chromium and sputtered gold contacts. Raman Spectroscopy was performed on the devices to determine the quality of the graphene. The GFETs were annealed to improve their performance before the channels were functionalized by immobilising the graphene surface with a linker molecule and anti-clusterin antibody. The detection was achieved through the binding reaction between the antibody and varying concentrations of clusterin antigen from 1 pg/mL to 1 ng/mL. The GFETs were characterized using 4-probe direct current (DC) electrical measurements which demonstrated a limit of detection of the biosensors to be below 1 pg/mL.
Background: Contamination of lead (Pb 2+) disturbs biological functions and causes neurotoxicity even at low levels. Pathogens such as Escherichia coli, P. aeruginosa and S. aureus found in packaged drinking water causes infections. Therefore, we demonstrate the multiplexed detection of Pb 2+ and E. coli in water using ZnO thin-film transistor (TFT) arrays. Results: Low voltage ZnO TFTs fabricated by physical vapour deposition were functionalized with APTES-glutaraldehyde molecules. TFTs with such functionalized ZnO surfaces showed good sensitivity and high specificity to the targets. The TFTs showed a detection limit of 27 nM and 10 5 cfu/ml for Pb 2+ and E. coli, respectively with the TFT flat-band voltage (V fb), and hence the TFT transconductance, being dependent on the target concentration. The direct integration of the sensing with the TFT and associated integrated circuits promises high density sensor arrays.Conclusion: The present work highlights the importance of aptamers in the multiplexed detection of different targets using low cost ZnO TFT array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.