For the first time, we analyzed the direct kinetic effects of concrete and rubber flooring on the soles of live dairy cows' claws while standing and walking. Ten adult dairy cows were equipped with foil-based pressure sensors (HoofSystem, Tekscan Inc., Boston, MA) under their left hind leg using a leather claw shoe. These sensors captured parameters of pressure distribution and vertical ground reaction forces while the cows walked on the 2 tested flooring types. The mean pressure was 15.1 to 21.1% lower on rubber flooring compared with concrete; mean pressure values (± standard deviation) were 36.32 ± 7.77 N/cm 2 for static measures and 57.33 ± 11.77 N/cm 2 for dynamic measures. We observed an even more obvious relief on rubber flooring in the maximum pressure loads, which were 30.1 to 32.7% lower on rubber flooring compared with concrete; mean pressure values (± standard deviation) were 98.79 ± 14.49 N/cm 2 for static measures and 150.45 ± 20.87 N/ cm 2 for dynamic measures). The force-time curves of the dynamic measures essentially showed biphasic curve progression, with local peaks at 29 and 79% of the stance phase. However, we found considerable differences in curve progression between individuals and between the lateral and medial claws, which may be verified in further investigations with more animals. The study showed a noticeable reduction in mechanical load during standing and walking on rubber flooring compared with concrete.
BackgroundMechanical interactions between hard floorings and the sole of bovine claws can be reasonable to cause traumatic claw lesions. In this ex vivo study, the direct kinetic impact of concrete and three types of rubber mats on the sole of dairy cattle claws was analyzed. In order to apply uniform loads, isolated distal hind limbs of adult Holstein Friesian dairy cows were functionally trimmed according to the Dutch method and attached to a load applicator. Kinetic data were recorded using a thin, foil-based pressure measurement system (Hoof™ System, Tekscan®).ResultsOn concrete, the load distribution between the lateral and medial claw was less balanced than on the rubber floorings. The loaded area was significantly smaller on concrete (32.2 cm2) compared to all rubber mats (48.3–58.0 cm2). Average pressures (Pav) and maximum pressures (Pmax) were significantly higher on concrete (Pav 44.7 N/cm2; Pmax 130.3 N/cm2) compared to the rubber floorings (Pav 24.9–29.7 N/cm2; Pmax 71.9–87.2 N/cm2). Pressure peaks occurred mainly in plantar and abaxial parts of the lateral claw and in apical and plantar regions of the medial claw. Load distribution displayed a widely unloaded slope region, but considering the pressure distribution under the claw, none of the zones showed a generally lower pressure exposure.ConclusionsAltogether, rubber floorings lead to a significant mechanical relief of the sole compared to concrete. Furthermore, relevant differences between the tested rubber mats could be determined. Therefore the used system may be applied to compare further flooring types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.