We experimentally examine the dynamics of two-particle collisions occuring on a surface. We find that in two-particle collisions a standard coefficient of restitution model may not capture crucial dynamics of this system. Instead, for a typical collision, the particles involved slide relative to the substrate for a substantial time following the collision; during this time they experience very high frictional forces. The frictional forces lead to energy losses that are larger than the losses due to particle inelasticity. In addition, momentum can be transfered to the substrate, so that the momentum of the two particles is not necessarily conserved. Finally, we measure the angular momenta of particles immediately following the collision, and find that angular momentum can be lost to the substrate following the collision as well.
We describe experiments on a horizontally shaken [x = Asin(omegat)] single layer of hard spheres rolling on a nearly horizontal surface. We identify a novel substrate-mediated convective flow which occurs when the system is tilted slightly so that the weak gravitational force, g-->(eff), acting on the particles is not parallel to the driving direction. As the shaking amplitude is increased, the system progresses through four regimes: solid-flat, solid-inclined, convective, and disordered. The control parameter is the driving velocity, Aomega, rather than the usual Aomega(2) of vertically shaken 3D systems. At the onset of convection, the critical velocity is V(c) approximately sqrt[2g(eff)d].
PACS. 45.70.Mg -Granular flow: mixing, segregation and stratification. PACS. 46.55.+d -Tribology and mechanical contacts. PACS. 83.10.Rs -Computer simulation of molecular and particle dynamics.Abstract. -Granular materials are known to separate by size under a variety of circumstances. Experiments presented here and elucidated by modeling and MD simulation document a new segregation mechanism, namely segregation by friction. The experiments are carried out by placing steel spheres on a horizontal plane enclosed by rectangular sidewalls, and subjecting them to horizontal shaking. Half the spheres are highly smooth; the remainder are identical to the first half, except that their surfaces have been roughened by chemical etching, giving them higher coefficients of friction. Segregation due to this difference in friction occurs, particularly when the grains have a relatively long mean free path. In the presence of an appropriately chosen small "hill" in the middle of the container, the grains can be made to completely segregate by friction type.
Sub-resolution assist features (SRAFs) are an important tool for improving through-process robustness of advanced lithographic processes. Assist features have generally been placed and adjusted according to heuristic rules. The complexity of these rules increases rapidly with shrinking features size requiring more wafer data for calibration and more effort on the part of engineers. For advanced nodes, a model-based approach may better account for the variety of two-dimensional geometries and reduce substantially the amount of user effort required for effective SRAF placement.There are many ways in which model-based methods can be used to improve the effectiveness of assist features; we investigate several here. In the investigations described here, process window models may be employed to: 1) derive optimal rules for initial AF placement in a rule-based process, 2) resolve mask rule violations in optimal ways, and 3) make post-placement corrections of mask sites with poor behavior. In addition, we discuss a method for replacing an initial rule-based assist feature placement with a model-based placement which can consider the local two-dimensional geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.