ive summarization approaches based on Reinforcement Learning (RL) have recently been proposed to overcome classical likelihood maximization. RL enables to consider complex, possibly non-differentiable, metrics that globally assess the quality and relevance of the generated outputs. ROUGE, the most used summarization metric, is known to suffer from bias towards lexical similarity as well as from suboptimal accounting for fluency and readability of the generated abstracts. We thus explore and propose alternative evaluation measures: the reported humanevaluation analysis shows that the proposed metrics, based on Question Answering, favorably compares to ROUGE -with the additional property of not requiring reference summaries. Training a RL-based model on these metrics leads to improvements (both in terms of human or automated metrics) over current approaches that use ROUGE as a reward.
In neural Information Retrieval, ongoing research is directed towards improving the first retriever in ranking pipelines. Learning dense embeddings to conduct retrieval using efficient approximate nearest neighbors methods has proven to work well. Meanwhile, there has been a growing interest in learning sparse representations for documents and queries, that could inherit from the desirable properties of bag-of-words models such as the exact matching of terms and the efficiency of inverted indexes. In this work, we present a new first-stage ranker based on explicit sparsity regularization and a log-saturation effect on term weights, leading to highly sparse representations and competitive results with respect to state-ofthe-art dense and sparse methods. Our approach is simple, trained end-to-end in a single stage. We also explore the trade-off between effectiveness and efficiency, by controlling the contribution of the sparsity regularization.
CCS CONCEPTS• Information systems → Language models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.