A series of semiconducting small molecules with bithiophene or bis‐3,4‐ethylenedioxythiophene cores are designed and synthesized. The molecules display stable reversible oxidation in solution and can be reversibly oxidized in the solid state with aqueous electrolyte when functionalized with polar triethylene glycol side chains. Evidence of promising ion injection properties observed with cyclic voltammetry is complemented by strong electrochromism probed by spectroelectrochemistry. Blending these molecules with high molecular weight polyethylene oxide (PEO) is found to improve both ion injection and thin film stability. The molecules and their corresponding PEO blends are investigated as active layers in organic electrochemical transistors (OECTs). For the most promising molecule:polymer blend (P4E4:PEO), p‐type accumulation mode OECTs with µA drain currents, μS peak transconductances, and a µC* figure‐of‐merit value of 0.81 F V−1 cm−1 s−1 are obtained.
The use of mechanofluorochromic (MFC) molecular materials as mechanical stress probes is challenging since quantitative studies of this phenomenon remain rare. The most common approach to quantify the fluorescence response...
Developing mechano‐responsive fluorescent polymers that exhibit distinct responses to distinct mechanical stresses requires a careful design of the fluorophore in order to tune its interactions with the polymer. A series of mechanofluorochromic (MFC) polymer composites are prepared by dispersing difluoroboron diketonates complexes with various alkyl side‐chain lengths (DFB‐alkyl) in linear low‐density polyethylene. Observation of the resulting polymer composites under a microscope reveals different aggregate sizes of the three DFB‐alkyls, thus confirming the functionalization by alkyl side chains as a powerful approach to control the aggregation process in a polymer. Besides, the three polymer composite samples are shown to be sensitive to both stretching and scratching, thereby consisting in the first reported example of MFC polymer responding to these two distinct mechanical stimuli. To establish a structure–property relationship, the strategy consisted in applying controlled tensile or friction forces while simultaneously monitoring fluorescence changes. Interestingly, the intensity of the MFC response to both stretching and scratching depends on the alkyl chain length and thus on the aggregation properties of the fluorophore. According to a time‐resolved fluorescence study, the emission is found to originate from different species following the type of applied stress (tensile or friction force).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.